Одной из ключевых частей теплотрассы является тепловой узел. Схема теплового узла, устройство и принцип действия могут показаться новичку чем-то непонятным, но обладая минимальными знаниями, можно полностью разобраться в этих тонкостях, что поможет в будущем обустроить высокоэффективную отопительную магистраль. В первую очередь следует рассмотреть базовые моменты.
1 Общая информация</span></h2>
Тепловой пункт расположен у входа теплотрассы в помещение. Основная его задача заключается в изменении рабочих параметров жидкости-теплоносителя, а если быть точным — в снижении температуры и давления воды перед ее попаданием в радиатор или конвектор. Такой процесс необходим не только для повышения безопасности жильцов и предотвращения возможного обжигания при контакте с батареей, но и для увеличения эксплуатационных сроков всего оборудования. Функция незаменима в тех случаях, если в здании имеются полипропиленовые или металлопластиковые трубы.
В соответствующей документации указаны регламентированные режимы работы подобных узлов. Они указывают на верхний и нижний порог температур, до которых может прогреваться теплоноситель. Также согласно современным стандартам на каждом узле должен присутствовать датчик тепла, определяющий текущие показатели жидкости, с которой работает теплоузел.
Схема, принцип работы и устройство теплового оборудования могут зависеть от нескольких особенностей, включая проект, который создавался с учетом индивидуальных требований заказчиков. Среди существующих типов тепловых узлов, особым спросом пользуются модели на основе элеватора. Такая схема характеризуется особой простотой и доступностью, но с ее помощью нельзя менять температуру жидкости в трубах, что доставляет потребителю массу неудобств. Главная проблема — чрезмерный расход тепловых ресурсов при временных оттепелях во время отопления.
В системе тепловых узлов на основе элеватора может присутствовать редуктор пониженного давления, который расположен непосредственно перед элеватором. Сам элеватор осуществляет подмешивание остывшей жидкости из обратной трубы к прогретому теплоносителю, достигшему подающего контура.
Принцип действия узла базируется на создании разряжения в месте выхода, что существенно снижает давление воды и запускает процесс смешивания.
‘ >Как работает элеваторный узел отопления / How does the Elevator unit heatingРекомендуемПрименение элеваторного узла системы отопления
2 Устройство системы и требования к монтажу</span></h2>
Устройство теплового узла подразумевает массу составляющих, которые взаимозависимы и функционируют для одной общей цели.
В числе основных элементов системы:
- 1. Запорная арматура.
- 2. Тепловой счетчик.
- 3. Грязевик.
- 4. Датчик расхода теплоносителя.
- 5. Тепловой датчик обратного трубопровода.
- 6. Дополнительное оборудование.
В зависимости от индивидуальных особенностей объекта система может оснащаться дополнительными датчиками и другими узлами. Что касается монтажа, то он должен выполняться с учетом определенных правил и требований:
- 1. Установка схемы должна происходить непосредственно у границ раздела балансовой принадлежности.
- 2. Использовать теплоноситель из общей коммунальной системы для индивидуальных нужд категорически запрещено.
- 3. Для контроля среднечасовых и среднесуточных показателей необходимо учитывать рабочие свойства учетного оборудования.
- 4. Любые датчики и учетные устройства фиксируются на трубопроводе «обратки».
‘ >Узел учёта тепловой энергии. На практике. Устройство многоквартирного дома.РекомендуемСхема подключения коллекторного узла для тёплого пола
3 Модели на базе теплообменника</span></h2>
Существует еще одна разновидность теплового узла частного дома — на основе теплообменника. В таком случае к устройству присоединен специальный теплообменник, который разделяет жидкость из теплотрассы от жидкости в помещении. Подобная функция необходима для дополнительной подготовки теплоносителя с помощью различных присадок и фильтрующих устройств. Схема расширяет возможности в регулировке давления и температурного режима теплоносителя внутри здания. Таким образом затраты на отопление постройки существенно снижаются.
Для подмешивания воды с разной температурой необходимо использовать термостатические клапаны. Подобные системы нормально взаимодействуют с радиаторами из алюминия, но чтобы последние прослужили максимально долго, необходимо тщательно выбирать теплоноситель, отказываясь от низкокачественного сырья. Конечно же, уследить за качеством жидкости проблематично, поэтому лучше отказаться от этого материала, отдав предпочтение биметаллическим или чугунным радиаторам.
Схема подключения ГВС подразумевает использование теплообменника. Такой метод обеспечивает массу плюсов, включая:
- 1. Возможность регулирования температуры воды.
- 2. Возможность изменения давления горячего теплоносителя.
К сожалению, многие управляющие компании не следят за температурой теплоносителя, а иногда даже занижают ее на несколько градусов. Среднестатистический потребитель практически не заметит такие изменения, но в масштабах целого дома — это экономия внушительных сумм денежных средств.
‘ >Теплообменники и блочные индивидуальные тепловые пунктыРекомендуемМонтаж узла прохода вентиляции через кровлю
4 Элеваторные узлы</span></h2>
В многоквартирных и многоэтажных помещениях, административных постройках и других объектах с большой площадью задействуются высокоэффективные ТЭЦ или мощные котельные. В частных коттеджах и небольших домах используются простые автономные системы, которые работают по понятному принципу.
Однако даже с такими установками возникают определенные проблемы, из-за которых становится проблематично проводить настройку или изменение рабочих параметров. А в больших котельных или ТЭЦ схемы такого оборудования гораздо сложнее и крупнее. От центральной трубы расходится масса ответвлений к каждому потребителю. При этом в каждом из них присутствует разное давление, а объемы потребляемого тепла существенно отличаются. Протяженность магистрали бывает разной, поэтому систему нужно проектировать правильно, чтобы самая отдаленная точка получала нужный объем тепловой энергии.
Разница давлений теплоносителя нужна для нормального продвижения теплоносителя по контуру, т. е. оно является естественной альтернативой для насосного оборудования. На этапе проектирования системы необходимо соблюдать установленную схему, иначе повысится риск разбалансировки при изменении объемов потребляемого тепла.
Более того, сильная разветвленность оборудования не должна нарушать эффективность теплоснабжения. Для обеспечения стабильной работы ЦОС (централизованной отопительной системы) нужно оборудовать в каждом помещении персональный элеваторный узел или специальный автоматизированный блок управления.
Конструкции по-особому удобны для всех многоквартирных домов. И если кто-то считает, что можно не использовать такой узел, заменяя его естественной подачей воды с чуть меньшей температурой, то это — глубокое заблуждение, т. к. при отсутствии элеваторного узла появится необходимость увеличить диаметр магистралей для подачи менее горячего теплоносителя. При наличии такой детали появится возможность добавлять в подающую жидкость определенное количество теплоносителя из обратного контура, который уже достаточно остыл.
Тем не менее, есть мнение, что применение элеваторного узла — старый метод, ведь на рынке уже имеются более прогрессивные решения, а именно:
- 1. смеситель с 3-ходовым клапаном;
- 2. пластинчатый теплообменник.
‘ >Что такое элеваторный узел в системе центрального отопления
5 Основные неполадки</span></h2>
К сожалению, даже такое незамысловатое устройство, как элеваторный узел, подвергается различным сбоям и неполадкам. Для определения неисправности необходимо проанализировать показания манометров в контрольных точках.
Одной из ключевых причин повреждения элеваторного узла является большое скопление мусора в трубопроводах. Зачастую этим мусором является грязь и твердые частички в воде. При резком снижении давления в отопительной системе чуть дальше грязевика нужно провести очистку этого резервуара. Грязь сбрасывают с помощью спускных каналов, после чего обслуживают сетки и внутренние поверхности конструкции.
При скачках давления необходимо проверить систему на наличие коррозийных процессов или мусора. Также проблему может вызывать разрушение сопла, в результате чего уровень давления станет слишком высоким.
Еще в работе элеваторных узлов встречаются такие явления, при которых давление начинает расти невероятными темпами, а манометры до и после грязевика отображают одинаковое значение. Если это так, необходимо провести комплексную очистку грязевика обратного контура. Для этого следует открыть краны, очистить сетку и избавиться от всех загрязнений внутри.
Если размеры сопла изменились из-за коррозийных процессов, возможно, произошло вертикальное разрегулирование отопительного контура. В таком случае нижние радиаторы будут прогреваться достаточно хорошо, а верхние останутся холодными. Для устранения неисправности нужно заменить сопло.
6 Распределительный пункт</span></h2>
Опытные инженеры и теплотехники рекомендуют задействовать один из трех режимов работы котельной установки. Такие рекомендации создавались с учетом теоретических данных и математических вычислений, а также были подтверждены многолетним практическим опытом. Каждый из выбранного режима гарантирует высокоэффективную передачу тепла с низким уровнем потерь. При этом на показатели КПД не влияет даже большая протяженность магистрали.
Эти режимы отличаются друг от друга разным соотношением температуры на подающем контуре и обратном:
- 1. 150/70 градусов Цельсия.
- 2. 130/70 градусов Цельсия.
- 3. 95/70 градусов Цельсия.
При выборе оптимального соотношения важно учитывать несколько факторов, включая региональные особенности и среднестатистическую величину зимней температуры воздуха. Если речь идет об отоплении частного дома, лучше отказаться от использования двух первых режимов, которые подразумевают прогрев теплоносителя до 150 и 130 градусов Цельсия. При таких температурах появляется вероятность получения опасных ожогов и других последствий от разгерметизации.
Как известно, жидкость в трубопроводной магистрали разогрета до таких температур, которые превышают точку кипения. Однако она никогда не закипает, что обусловлено соответствующим давлением. При необходимости подобрать оптимальный режим для частной постройки, нужно снизить давление и температуру, для чего и используется элеваторный узел. Сам элемент представляет собой специальное теплотехническое оборудование, которое находится в распределительном пункте.
7 Сферы применения и предназначение</span></h2>
Разобравшись со схемой теплоузла отопления, можно переходить непосредственно к монтажным работам. Как известно, такие установки зачастую используются в многоквартирных помещениях, которые подключены к общей коммунальной отопительной системе.
Тепловые узлы предназначаются для таких задач:
- 1. Проверки и изменения рабочих свойств теплоносителя и теплового потенциала.
- 2. Мониторинга текущего состояния систем отопления.
- 3. Мониторинга и записи основных показателей теплоносителя — текущей температуры, давления и объема.
- 4. Проведения денежных расчетов и составления оптимального плана расходов энергии.
Обустраивая отопительную систему в помещении, нужно понимать, что центральное отопление требует определенных затрат. Если речь идет о многоквартирном здании, то все расходы разделяются на жильцов. Но иногда они бывают неоправданными из-за недобросовестного отношения управляющих компаний и неправильной установки деталей системы.
И чтобы предотвратить существенный финансовый ущерб, важно заранее установить высокоэффективный тепловой узел частного дома, который будет автоматически регулировать любые изменения и подбирать оптимальное соотношение температуры теплоносителя. Только грамотная проверка оборудования и правильное обслуживание позволят обустроить эффективную систему отопления, которая прослужит долгие годы без сбоев.
‘ >Узел учёта тепловой энергии. Введение. Устройство многоквартирного дома.Фото <index>В любой здании, в том числе и в частном доме, присутствует несколько систем жизнеобеспечения. Одна из них – это отопительная система. В частных домах могут использоваться разные системы, которые выбираются в зависимости от размеров постройки, количества этажей, особенностей климата и других факторов. В данном материале мы подробно разберем, что представляет собой тепловой узел отопления, как он работает и где используется. Если у вас уже стоит элеваторный узел, то вам будет полезно узнать про дефекты и способы их устранения.
Простыми словами, тепловой узел представляет собой комплекс элементов, служащих для соединения тепловой сети и потребителей тепла. Наверняка у читателей возник вопрос, можно ли установить этот узел самостоятельно. Да, можно, если вы умеете читать схемы. Мы рассмотрим их, причем одна схема будет разобрана подробно.Содержание
Принцип работы
Чтобы понять, как работает узел, необходимо привести пример. Для этого мы возьмем трехэтажный дом, так как элеваторный узел применяется именно в многоэтажных домах. Основная часть оборудования, которая относится к этой системе, расположена в подвальном помещении. Лучше понять работу нам поможет схема ниже. Мы видим два трубопровода:
- Подающий.
- Обратный.
Теперь нужно найти на схеме тепловую камеру, через которую вода отправляется в подвальное помещение. Также можно заметить запорную арматуру, которая должна в обязательном порядке стоять на входе. Выбор арматуры зависит от типа системы. Для стандартной конструкции используют задвижки. Но если речь идет о сложной системе в многоэтажном доме, то мастера рекомендуют брать стальные шаровые краны.При подключении теплового элеваторного узла необходимо придерживаться норм. В первую очередь это касается температурных режимов в котельных. При эксплуатации допускаются следующие показатели:
- 150/70°C;
- 130/70°С;
- 95(90)/70°C.
Когда температура жидкости находится в пределах 70-95°C, она начинает равномерно распределяться по всей системе за счет работы коллектора. Если же температура превышает 95°C, элеваторный узел начинает работать на ее понижение, так как горячая вода может повредить оборудование в доме, а также запорную арматуру. Именно поэтому в многоэтажных домах используется такой тип конструкции – он контролирует температуру автоматически.
Разбор схемы
Как вы поняли, узел состоит из фильтров, элеватора, контрольно-измерительных приборов и арматуры. Если вы планируете самостоятельно заниматься установкой этой системы, то стоит разобраться со схемой. Подходящим примером будет многоэтажка, в подвальном помещении которой всегда стоит элеваторный узел. На схеме элементы системы отмечены цифрами:1, 2 – этими цифрами обозначены подающий и обратный трубопроводы, которые установлены в теплоцентрали.3,4 – подающий и обратный трубопроводы, установленные в системе отопления постройки (в нашем случае это многоэтажный дом).5 – элеватор.6 – под этой цифрой обозначены фильтры грубой очистки, которые также известны как грязевики.7 – термометры8 – манометры.В стандартный состав этой системы отопления входят приборы контроля, грязевики, элеваторы и задвижки. В зависимости от конструкции и назначения, в узел могут добавляться дополнительные элементы.
Интересно! Сегодня в многоэтажных и многоквартирных домах можно встретить элеваторные узлы, которые оснащены электроприводом. Такая модернизация нужна для того, чтобы регулировать диаметр сопла. За счет электрического привода можно корректировать тепловой носитель.</p>Стоит сказать, что с каждым годом коммунальные услуги дорожают, это касается и частных домов. В связи с этим производители систем снабжают их устройствами, направленными на сбережение энергии. К примеру, теперь в схеме могут присутствовать регуляторы расхода и давления, циркуляционные насосы, элементы защиты труб и очистки воды, а также автоматика, направленная на поддержание комфортного режима.
Также в современных системах может быть установлен узел учета тепловой энергии. Из названия можно понять, что он отвечает за учет потребления тепла в доме. Если это устройство отсутствует, то не будет видна экономия. Большинство владельцев частных домов и квартир стремятся поставить счетчики на электроэнергию и воду, ведь с ними платить приходится значительно меньше.
» alt=»»>
Характеристики узла и особенности работы
По схемам можно понять, что элеватор в системе нужен для охлаждения перегретого теплоносителя. В некоторых конструкциях присутствует элеватор, который может и нагревать воду. Особенно такая система отопления актуальна в холодных регионах. Элеватор в этой системе запускается только тогда, когда остывшая жидкость смешивается с горячей водой, поступающей из подающей трубы.
По этой схеме можно понять, что узел значительно повышает эффективность работы всей системы отопления в доме. Он работает одновременно как циркуляционный насос и смеситель. Что касается стоимости, то обойдется узел достаточно дешево, особенно тот вариант, который работает без электроэнергии.
Но любая система имеет и недостатки, коллекторный узел не стал исключением:
- Для каждого элемента элеватора нужны отдельные расчеты.
- Перепады компрессии не должны превышать 0,8-2 Бар.
- Отсутствие возможности контролировать высокую температуру.
Как устроен элеватор
В последнее время элеваторы появились в коммунальном хозяйстве. Почему же выбрали именно это оборудование? Ответ прост: элеваторы остаются стабильными даже в том случае, когда в сетях происходят перепады гидравлического и теплового режимов. Состоит элеватор из нескольких частей – камеры разряжения, струйного устройства и сопла. Также можно услышать про «обвязку элеватора» – речь идет о запорной арматуры, а также измерительных приборов, которые позволяют поддерживать нормальную работу всей системы.Как было упомянуто выше, сегодня используются элеваторы, оснащенные электроприводом. За счет электрического привода механизм автоматически контролирует диаметр сопла, как результат, в системе поддерживается температура. Использование таких элеваторов способствует уменьшению счетов за электроэнергию.
Конструкция оснащена механизмом, который вращается за счет электрического привода. В более старых версиях используется зубчатый валик. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Таким образом меняется диаметр сопла, после чего можно изменить расход теплового носителя. За счет этого механизма расход сетевой жидкости можно снизить до минимума или повысить на 10-20%.
Возможные неисправности
Частой неисправностью можно назвать механическую поломку элеватора. Это может произойти из-за увеличения диаметра сопла, дефектов запорной арматуры или засорения грязевиков. Понять, что элеватор вышел из строя, довольно просто – появляются ощутимые перепады температуры теплового носителя после и до прохода через элеватор. В случае, если температура небольшая, то устройство просто засорилось. При больших перепадах требуется ремонт элеватора. В любом случае, при появлении неисправности требуется диагностика.Сопло элеватора довольно часто засоряется, особенно в тех местах, где вода содержит множество добавок. Этот элемент можно демонтировать и прочистить. В случае, когда увеличился диаметра сопла, необходима корректировка или полная замена этого элемента.
К остальным неисправностям можно отнести перегревы приборов, протечки и прочие дефекты, присущие трубопроводам. Что касается грязевика, то степень его засорения можно определить по показателям манометров. Если давление увеличивается после грязевика, то элемент нужно проверить.» alt=»»>
</index>
В процессе эксплуатации могут возникать утечки теплоносителя из контура отопительной системы. После элеватора еще и обратку считать будет. Журнал учета КИПа, выдачи нарядов-допусков, оперативный, учета выявленных при осмотре установок и сетей дефектов, проверки знаний, а также инструктажей. Схема теплового узла Регулировку подачи теплоносителя осуществляют узлы элеваторные отопления дома. Как работают тепловые пункты в многоквартирных домах? Подпитка горячего водоснабжения выполняется от системы холодного водоснабжения. Вода в циркуляционном контуре посредством циркуляционного насосного оборудования для горячего водоснабжения передвигается по кругу от теплового пункта к потребителям и обратно. В общем оно того стоит! Отопительная система также является замкнутым контуром, по которому происходит движение теплоносителя с помощью циркуляционных насосов от теплового пункта к потребителям и обратно. Бюджет проекта составляет млн. В нем она нагревается сетевой водой, поступающей из подающего трубопровода внешней сети. Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Для работы такого узла обязательно наличие источника электроэнергии достаточно большой мощности. Проверка ИТП
Зависимая схема с двухходовым клапаном и насосами в обратном трубопроводе
От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. На сегодняшний день популярностью пользуются устройства, с электрическим приводом регулировки сопла, благодаря чему появляется возможность автоматического изменения расхода теплоносителя в системе отопления многоквартирных домов. При монтаже автоматизированного теплового пункта можно пользоваться пофасадным регулированием, когда регулировка одной стороны МКД не зависит от другой. Подпитка отопительной системы происходит с помощью соответствующего насосного оборудования из обратного трубопровода тепловых сетей. Отопительная система также является замкнутым контуром, по которому происходит движение теплоносителя с помощью циркуляционных насосов от теплового пункта к потребителям и обратно. Затем теплоноситель направляется в обратный трубопровод и по магистральной сети поступает обратно для повторного использования на теплогенерирующее предприятие. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Она меняет просвет сопла и в результате меняется расход теплоносителя. Тепловой пункт с погодозависимым регулированием
Элеваторный узел системы отопления – принцип работы
На рисунках ниже указаны самые распространенные схемы соединения тепловых сетей и тепловых пунктов. В статье рассмотрены принципиальные схемы тепловых пунктов ТП , а не монтажные. Датчик тепла устанавливается в подающую трубу, которая находится в подвале, до элеватора. Сертификаты на используемые электроды и трубопроводы. В составе ИТП, который также управляет системой горячего водоснабжения дома, прежде всего необходим теплообменник, в котором, собственно, происходит подогрев воды из водопровода до необходимой температуры, также регулирующий клапан с электроприводом, которым управляет электронный регулятор температуры или автоматический регулятор температуры прямого действия, а также автоматический регулятор перепада давления и два циркуляционных насоса. Руководство УК вынуждено полагаться на проектировщиков, однако они обычно аффилированы с конкретным производителем ТП или компанией, производящей монтаж. Не допускается применять чрезмерное усилие в случае ручного управления клапаном, а также при наличии давления в системе нельзя разбирать регуляторы. Реализация на практике индивидуального теплового пункта Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период — гг. Ведь очень часто расчетное потребление значительно больше фактического по причине того, что при расчете нагрузки поставщики тепловой энергии завышают их значения, ссылаясь на дополнительные расходы. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Наблюдать за отсутствием постороннего шума, а также не допускать повышенной вибрации. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.
Зависимая схема с двухходовым клапаном и насосами в подающем трубопроводе
Подобных ситуаций позволит избежать установка приборов учета. При этом по мере необходимости потребители отбирают из контура воду. Может состоять из одного или нескольких блоков. Проектные документы, где есть все необходимые согласования. Дейнеко Индивидуальный тепловой пункт ИТП — важнейшая составляющая систем теплоснабжения зданий.
Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например ванных комнат в многоквартирных жилых домах. Охлажденная сетевая вода поступает в систему отопления.
Но любая система имеет и недостатки, коллекторный узел не стал исключением: Для каждого элемента элеватора нужны отдельные расчеты. Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. Изменение просвета меняет скорость движения воды. Суть схемы теплоснабжения Москвы
Особенности работы ЦТП монтаж тепловых пунктов
Отопительную систему подпитывает обратный трубопровод теплосетей. Источники тепла и системы транспорта тепловой энергии[ править править код ] Источником тепла для ТП служат теплогенерирующие предприятия котельные , теплоэлектроцентрали.
Вода, из наружной водопроводной сети подается в подогреватель ГВС.
Компенсация понижения уровня давления осуществляется посредством группы насосов. Просмотрено: Схему ГВС можно обозначить как одноступенчатую, независимую и параллельную.
Режим коррекции — автоматический. Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например ванных комнат в многоквартирных жилых домах. Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры клапан термореле в зависимости от температуры воды за подогревателем II-ой ступени.
Рекомендуем: Как измеряется петля фаза ноль
Принципиальная схема индивидуального теплового пункта утверждается. Тепловые пункты
Акт на промывку и опрессовку систем тепловые сети, отопительная система и система горячего водоснабжения. ИТП для отопления, горячего водоснабжения и вентиляции. Проектную документацию со всеми необходимыми согласованиями. Все это оборудование должно работать исключительно в автоматическом режиме, поэтому критически важно правильное налаживание всего комплекса оборудования для работы в конкретном доме.
ЦТП должны размещаться на границах микрорайонов кварталов между магистральными, распределительными сетями и квартальными. Одна из них — это отопительная система. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания.
Это устройство можно представить в виде емкости. Но стоимость такого устройства намного выше, хотя его использование более экономично. Расход тепла контролируется и учитывается. После элеватора еще и обратку считать будет.
После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Монтажная компания должна быть членом СРО. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления. Создание принципиальной схемы индивидуального теплового пункта в AutoCAD P&ID
О значении теплового пункта в общей системе теплоснабжения много говорить не надо. Тепловые схемы тепловых узлов задействованы как в сети, и так и в системе внутреннего потребления.
Понятие о тепловом пункте
Экономичность использования и уровня подачи тепла к потребителю напрямую зависит от правильности функционирования оборудования.
По сути, тепловой пункт представляет собой юридическую границу, что само по себе предполагает обустройство его набором контрольно-измерительной техники. Благодаря такой внутренней начинке определение взаимной ответственности сторон становится более доступным. Но прежде чем разобраться с этим, необходимо понять, как функционируют тепловые схемы тепловых узлов и для чего их читать.
Как определить схему теплового узла
При определении схемы и оборудования теплового пункта опираются на технические характеристики местной системы теплопотребления, внешней ветки сети, режима работы систем и их источников.
В этом разделе предстоит ознакомиться с графиками расхода теплоносителя – тепловой схемой теплового узла.
Подробное рассмотрение позволит понять, как производится подключение к общему коллектору, давление внутри сети и относительно теплоносителя, показатели которых напрямую зависят от расхода тепла.
Важно! В случае присоединения теплового узла не к коллектору, а к тепловой сети расход теплоносителя одной ветки неизбежно отражается на расходе другой.
Разбор схемы теплового узла в деталях
На рисунке изображены два типа подключений: а – в случае подключения потребителей непосредственно к коллектору; б – при присоединении к ветке тепловой сети.
Чертеж отражает графические изменения расходов теплоносителя при наступлении таких обстоятельств:
А – при подключении систем отопления и водоснабжения (горячего) к коллекторам теплоисточника по отдельности.
Б – при врезке тех же систем к наружной тепловой сети. Интересно, что присоединение в таком случае отличается высокими показателями потери давления в системе.
Рассматривая первый вариант, следует отметить, что показатели суммарного расхода теплоносителя возрастают синхронно с расходом на снабжение горячей водой (в режиме І, ІІ, ІІІ), в то время как во втором, хоть рост расхода теплового узла и имеет место быть, вместе с ним показатели расхода на отопление автоматически понижаются.
Исходя из описанных особенностей тепловой схемы теплового узла, можно сделать вывод, что в результате суммарного расхода теплоносителя, рассмотренного в первом варианте, при его применении на практике составляет около 80 % расхода при применении второго прототипа схемы.
Место схемы в проектировании
Проектируя схему теплового узла отопления в жилом микрорайоне, при условии, что система теплоснабжения закрытая, уделите особое внимание выбору схемы соединения подогревателей горячего водоснабжения с сетью. Выбранный проект будет определять расчетные расходы теплоносителей, функции и режимы регулирования, прочее.
Выбор схемы теплового узла отопления в первую очередь определяется установленным тепловым режимом сети. Если сеть функционирует по отопительному графику, то подбор чертежа производится исходя из технико-экономического расчета. В таком случае параллельную и смешанную схемы тепловых узлов отопления сравнивают.
Особенности оборудования теплового пункта
Чтобы сеть теплоснабжения дома исправно функционировала, на пункты отопления дополнительно устанавливают:
- задвижки и вентили;
- специальные фильтры, улавливающие частицы грязи;
- контрольные и статистические приборы: термостаты, манометры, расходомеры;
- вспомогательные или резервные насосы.
Условные обозначения схем и как их читать
На рисунке выше изображена принципиальная схема теплового узла с подробным описанием всех составляющих элементов.
Номер элемента |
Условное обозначение |
1 |
Трехходовой кран |
2 |
Задвижка |
3 |
Кран пробковый |
4,12 |
Грязевик |
5 |
Клапан обратный |
6 |
Шайба дроссельная |
7 |
V-образный штуцер для термометра |
8 |
Термометр |
9 |
Манометр |
10 |
Элеватор |
11 |
Тепломер |
13 |
Водомер |
14 |
Регулятор расхода воды |
15 |
Регулятор подпара |
16 |
Вентили в системе |
17 |
Линия обводки |
Обозначения на схемах тепловых узлов помогают разобраться в функционировании узла путем изучения схемы.
Инженеры, ориентируясь на чертежи, могут предположить, где возникает поломка в сети при наблюдающихся неполадках, и быстро ее устранить. Схемы тепловых узлов пригодятся и в том случае, если вы занимаетесь проектированием нового дома. Такие расчеты обязательно входят в пакет проектной документации, ведь без них не выполнить монтаж системы и разводку по всему дому.
Информация о том, что такое чертеж тепловой системы и как его принимать на практике, пригодится каждому, кто хотя бы раз в своей жизни сталкивался с отопительными или водонагревающими приборами.
Надеемся, приведенный в статье материал поможет разобраться с основными понятиями, понять, как определить на схеме основные узлы и точки обозначения принципиальных элементов.
Главная > Индивидуальный тепловой пункт (ИТП) > Типовые схемы
ИТП для системы отопления | |
ИТП выполнен по независимой схеме, с использованием одного пластинчатого теплообменника, рассчитанного на 100% нагрузки. Для компенсации потерь давления используется сдвоенный насос. Подпитка системы отопления осуществляется из обратного трубопровода тепловой сети. Данный блок ИТП может оснащаться узлом учета тепловой энергии, блоком системы ГВС и другими необходимыми узлами и блоками. |
|
ИТП для системы ГВС | |
ИТП выполнен по независимой, параллельной, одноступенчатой схеме с использованием двух пластинчатых теплообменников, каждый из которых рассчитан на 50% нагрузки. Для компенсации потерь давления используется группа насосов. Подпитка системы ГВС осуществляется из системы холодного водоснабжения. Данный блок ИТП может оснащаться узлом учета тепловой энергии, блоком системы отопления и другими необходимыми узлами и блоками. |
|
ИТП для системы отопления и системы ГВС | |
ИТП выполнен по независимой схеме. Для системы отопления используется один пластинчатый теплообменник, рассчитанный на 100% нагрузки. Система ГВС выполнена по независимой, двухступенчатой схеме с использованием двух пластинчатых теплообменников. Для компенсации потерь давления используются группы насосов. Подпитка системы отопления осуществляется из обратного трубопровода тепловой сети при помощи подпиточных насосов. Подпитка системы ГВС осуществляется из системы холодного водоснабжения. ИТП оборудован узлом учета тепловой энергии. |
|
ИТП для систем отопления, вентиляции и ГВС | |
ИТП выполнен по независимой схеме. Для системы отопления и вентиляции используется один пластинчатый теплообменник, рассчитанный на 100% нагрузки. Система ГВС выполнена по независимой, одноступенчатой, параллельной схеме с использованием двух пластинчатых теплообменников, рассчитанных на 50% нагрузки каждый. Для компенсации потерь давления используются группы насосов. Подпитка системы отопления осуществляется из обратного трубопровода тепловой сети. Подпитка системы ГВС осуществляется из системы холодного водоснабжения. ИТП оборудован узлом учета тепловой энергии. |
Принципиальные схемы ИТП (Индивидуальных тепловых пунктов)
для систем (систем отопления / вентиляции и водоснабжения), с вариантами подключений по зависимой и независимой схеме, с использованием различных типов теплообменников (водоподогревателей).
1. |
Принципиальная схема ИТП для одной системы отопления при независимом подключении к тепловой сети. |
|
2. | Принципиальная схема ИТП для двух систем отопления при независимом подключении к тепловой сети. | |
3. | Принципиальная схема ИТП бля одной системы отопления при зависимом подключении к тепловой сети. | |
4. | Принципиальная схема ИТП для двух систем отопления при зависимом подключении к тепловой сети. | |
5. | Принципиальная схема ИТП для ситемы ГВС с одноступенчатым подключением водоподогревателя. | |
6. | Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водонагревателем. | |
7. | Принципиальная схема ИТП для систем отопления при независимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем. | |
8. | Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем. | |
9. | Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с одноступенчатым водоподогревателем. | |
10А. | Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе раздельных одноходовых теплообменников. | |
10Б. | Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника. | |
11А. | Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе раздельных одноходовых теплообменников. | |
11Б. | Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника. | |
12А. | Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе одноходовых теплообменников. | |
12Б. | Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе двухходового моноблочного теплообменника. | |
13А. | Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе одноходовых теплообменников. | |
13Б. | Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с двухступенчатым подключением водоподогревателей на базе моноблочного теплообменника. | |
14. | Принципиальная схема ИТП для системы отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. | |
15. | Принципиальная схема ИТП для двух систем отопления при независимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. | |
16. | Принципиальная схема ИТП для системы отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. | |
17. | Принципиальная схема ИТП для двух систем отопления при зависимом присоединении к тепловой сети и системы ГВС с непосредственным водоразбором. | |
Используемые источники:
- https://oventilyacii.ru/otoplenie/teplovoj-uzel-printsip-dejstviya-i-shema-teplovogo-uzla.html
- http://jsnip.ru/vodosnabzheniya/shema-teplovogo-uzla-otoplenija.html
- https://tokzamer.ru/bez-rubriki/principialnaya-shema-itp
- https://fb.ru/article/334409/teplovyie-shemyi-teplovyih-uzlov-kak-chitat-cherteji-i-chto-oni-znachat
- http://tovk.ru/tipovye_shemy