Материал из Энциклопедия журнала «За рулем» Перейти к: навигация, поиск
Газогенератор
В 1923 году профессором Наумовым была разработана газогенераторная установка для 3-тонного грузовика, способная работать на древесном угле или на антраците. Установка была испытана в стационарных условиях совместно с 4-цилиндровым бензиновым двигателем Berliet L 14 мощностью 35 л.с. В 1928 году FIAT-15Ter с газогенератором Наумова совершил пробег по маршруту Ленинград – Москва – Ленинград. Первая половина 30-х годов отмечена многочисленными исследованиями, направленными на выявление оптимальной конструкции газогенераторной установки. Статьи об испытательных автопробегах и новых разработках постоянно появлялись в прессе, в том числе и в журнале «За Рулем». В подавляющем большинстве это были установки для грузового транспорта, что не удивительно – ведь основной транспортной единицей народного хозяйства в период индустриализации являлся грузовик, а не легковой автомобиль. Тем не менее, следует упомянуть созданный в 1935 году ГАЗ-А с газогенераторной установкой Автодор – III, а также ГАЗ-М1 с газогенератором НАТИ-Г12, на котором в сентябре 1938 года был установлен рекорд скорости для газогенераторного автомобиля 60,96 км/ч. Первым серийным газогенераторным автомобилем являлся ЗИС-13, но подлинно массовыми «газгенами» стали ГАЗ-42, ЗИС-21 и УралЗИС-352. Горение углерода топлива можно описать следующим образом: С + О2 = СО2 — это полное сгорание топлива, которое сопровождается выделением углекислого газа СО2; и С + (1/2)О2 = СО — это неполное сгорание, в результате которого образуется горючий газ – оксид углерода СО. Оба этих процесса происходят в так называемой «зоне горения» газогенератора. Оксид углерода СО образуется также при прохождении углекислого газа СО2 сквозь слой раскаленного топлива: С + СО2 = 2СО В процессе участвует часть влаги топлива (или влага, подведенная извне) с образованием углекислого газа СО2, водорода Н2, и горючего оксида углерода СО. С + Н2О = СО + Н2 СО + Н2О = СО2 + Н2 Зону, в которой протекают три описанных выше реакции называют «зоной восстановления» газогенератора. Обе зоны – горения и восстановления – несут общее название «активная зона газификации». Примерный состав газа, полученного в газогенераторе обращенного процесса газификации при работе на древесных чурках абсолютной влажностью 20%, следующий (в % от объема): — водород Н2 16,1%; — углекислый газ СО2 9,2%; — оксид углерода СО 20,9%; — метан СН4 2,3%; — непредельные углеводороды СnHm (без смол) 0,2%; — кислород О2 1,6%; — азот N2 49,7% Итак, генераторный газ состоит из горючих компонентов (СО, Н2, СН4, СnHm) и балласта (СО2, О2, N2, Н2О)
Типы газогенераторов
Газогенераторы прямого процесса газификации Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит. В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С. Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С. Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С. В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя. Подача водяного пара в газогенератор должна производиться пропорционально количеству сжигаемого в газогенераторе топлива. Существовало несколько способов регулировки подачи пара в камеру газификации: — механический способ, когда вода подавалась в испаритель газогенератора с помощью насоса, приводимого в действие от двигателя и имевшего перепускной кран, который был связан с дроссельной заслонкой. Таким образом, количество воды, подаваемой в газогенератор, изменялось в зависимости от числа оборотов и нагрузки двигателя; — термический способ, когда в испарителе, расположенном вблизи зоны горения, поддерживался с помощью поплавкового устройства необходимый уровень воды, а количество образующегося пара изменялось в зависимости от нагрева испарителя, то есть в зависимости от температуры в зоне горения; — гидравлический способ, когда расход воды регулировался иглой, перекрывавшей сечение жиклера, и связанной с мембраной, на которую действовала разность давлений до и после диафрагмы, установленной в газопроводе, соединявшим газогенераторную установку с двигателем; — пневматический способ, при котором вода подавалась в испаритель газогенератора вместе с воздухом, засасываемым через обычный карбюратор.
Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы). Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7. Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора. Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10. Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки. На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны. Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации. Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.
Принцип работы автомобильной газогенераторной установки
Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.
Охлаждение и грубая очистка газа
На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.
Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.
Фильтры тонкой очистки
Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.
Вентилятор розжига
В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод. Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.
Смеситель
Методы уменьшения потерь мощности двигателей газогенераторных автомобилей
Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки. Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.
Эксплуатация автомобилей с газогенераторными установками
Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях. Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке. Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель. При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя. В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок. Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра. Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.
Дополнительные материалы:
Назад
Если Вы обнаружили ошибку или хотите дополнить статью, выделите ту часть текста статьи, которая нуждается в редакции, и нажмите Ctrl+Enter. Далее следуйте простой инструкции.
Именно так, было такое в СССР и других странах в 20-40 гшоды прошлого века.
Ну ладно, не совсем так, двигатель работал на газе, который добывался из дров.
В 1920-х годах, немецкий инженер Жорж Эмбер разработал генератор, вырабатывающий древесный газ для мобильного использования. Получаемый газ очищался, немного охлаждался, а затем подавался в камеру сгорания двигателя автомобиля, при этом, двигатель практически не нуждался в переделке. С 1931 года началось массовое производство генераторов Эмбера. В конце 1930-х годов, уже около 9000 транспортных средств использовали газогенераторы исключительно в Европе.
Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.
Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.
В нашей стране разработка автомобильных и тракторных газогенераторов началась в двадцатые годы ХХ века. В то время советский союз был могучей державой и имел свою собственную развитую индустрию добычи нефти, благодаря чему не испытывал особых проблем с бензином. Но в то время шло освоение отдаленных районов Севера и Сибири, где было громадное количество древесины, затрудненная доставка железнодорожных цистерн с бензином. Поэтому поощрялись многочисленные разработки по созданию газогенераторов и газогенераторной техники. Существовало специальное КБ В«ГазогенераторстройВ». Разработкой газогенераторов занимались НАТИ, ВАММ (Всесоюзная академия моторизации и механизации Красной Армии), а также ряд институтов лесотехнического профиля.
Был проделан большой объем исследовательских работ, который позволил выбрать наиболее прочные и дешевые материалы для изготовления топки – самого быстро изнашиваемого узла. Были определены параметры газогенераторной установки, обеспечивающие наилучшее протекание рабочего процесса. В середине 30-х годов был налажен выпуск газогенераторов. Их производством занимался харьковский завод В«Свет шахтераВ».
Первыми серийными моделями установок стали В«Пионер-Д8В» для автомобиля ЗИС-5, (эту установку разработали в учреждениях лесной промышленности), и В-5 для автомобиля ГАЗ-АА, (разработали в КБ В«ГазогенераторстройВ»). Первые модели получились не популярными. В 1935-1936 годах было построено всего 500 установок В«Пионер-Д8В» и только 76 установок В-5. Более совершенными и популярными стали установки разработанные НАТИ. Вместо В-5 В«Свет шахтераВ» начал выпускать установку НАТИ-Г14.
Сам автомобиль нужно было адаптировать к новому виду топлива. Более подходящей моделью оказалась машина ЗИС-11 с удлиненной базой. Этот газогенераторный автомобиль получил индекс ЗИС-13. Газогенераторная установка на ЗИС-13 располагалась позади кабины водителя. И за ней на удлиненной раме устанавливалась обычная грузовая платформа от ЗИС-5. Серийный выпуск этой машины освоили в 1936 году. Автомобилей ЗИС-13 было выпущено около 900 – 1000 шт. Затем, в 1938 году, эстафету приняла модель ЗИС-21 с новой усовершенствованной газогенераторной установкой, которую можно было устанавливать на стандартное шасси ЗИС-5. Эта модель оказалась самой удачно и выпускалась до 1952 года наВ«Урал ЗИСеВ».
Специалистам завода ГАЗ было уже проще. Они изучили опыт ЗИСовцев, а также разработки газогенераторов В«ГазогенераторстрояВ» и НАТИ, и разработали собственную конструкцию газогенератора. ГАЗовская газогенераторная В«полуторкаВ» выпускалась с 1939 по 1946 годы под маркой ГАЗ-42. Кроме того, еще выпускались грузовики марки ГАЗ-43 и ЗИС-31 с облегченными и более простыми установками, работавшими на древесном угле.
В/на Украине был разработан и введен в эксплаутацию газогенератор на семечной лузге.
В газогенераторном автомобиле не получалось сесть, запустить двигатель и просто поехать. Сначала нужно было раскочегарить, разжечь, газогенератор, что требовало от водителя определенной сноровки: *Одним из способов розжига было использование естественной тяги: нужно было открыть верхний загрузочный и нижний зольный люки, в зольник положить растопку: лучину, бумагу, солому, пропитанные бензином тряпки, и поджечь. Вслед за растопкой огонь охватит дрова или уголь в топливнике. Такой розжиг мог занять минут 30 – 40. *Более быстрым способом розжига было использование искусственной тяги. Ее могли создать либо раскручиваемый стартером двигатель, либо расположенный между очистителем и смесителем электрический вентилятор. Чтобы двигатель или вентилятор прососал воздух по всем трубам, охладителям и очистителям, требовалось длительная работа стартера или электромотора, а значит, очень мощный аккумулятор.
Но аккумуляторы в те годы были в дефиците, а тем более мощные и надежные. Нельзя было долго крутить стартер, так как В«полуторкиВ» имели крайне недолговечный стартер. Бензиновые В«газикиВ» обычно заводили с помощью рукоятки. А создать нужную тягу в газогенераторной системе с помощью несовершенного стартера было практически невозможно. Поэтому пришлось дополнить конструкцию устройствами, обеспечивающими кратковременную работу двигателя на бензине – для получения искусственной тяги на момент розжига и пуска.
Смеситель был совмещен с пусковым карбюратором. Его работа требовала от водителя особой манипуляции несколькими дроссельными заслонками, обеспечивавшими пуск и переключение с бензина на газ. Но и в этом случае запуск автомобиля занимал минут 10 – 15…
При эксплуатация газогенераторных установок необходимо было очень часто производить очистку зольников, очистителей и охладителей. И хотя по инструкции делать это требовалось через 250 – 300, а то и 1000 километров пробега, на деле процедуру приходилось проводить куда чаще – порою после 100 – 150 километров пробега.
Кроме этого, необходимо было постоянно следить за герметичностью всех соединений в длинной веренице труб. Еще одну серьезную проблему создавал появлявшийся в системе конденсат. Зимой он замерзал, вынуждая бороться со льдом в трубах, а в сильные морозы требовал утепления и сам газогенератор. Перед остановкой двигателя нужно было дать ему некоторое время поработать на холостых оборотах, чтобы уменьшился огонь в бункере. При резкой остановке мотора в лучшем случае происходил сильный выброс ядовитого газа, а в худшем мог возникнуть пожар.
Для газогенераторных автомобилей существовали определенные правила, так как пожарная безопасность газогенераторов являлась особой проблемой и представляла определенную угрозу. Газогенераторным автомобилям, имевшим на борту источник открытого пламени, запрещался въезд на склады горюче-смазочных материалов и боеприпасов. Серьезную опасность газогенератор представлял и в случае аварии.
При переводе двигателя на газогенераторный газ его мощность снижалась на 35 – 40%, по сравнению с бензиновым двигателем. Со снижением мощности боролись путем весьма существенного повышения степени сжатия. У мотора ГАЗ-ММ степень сжатия увеличили с 4,6 до 6,5, а у мотора ЗИС-5 степень сжатия увеличили с 4,6 до 7. В результате получалось, что степень сжатия у газогенераторных автомобилей была даже выше, чем у грузовых бензиновых моторов последнего поколения.
Несмотря на все хитрости, применяемые изготовителями, мощность оставалась слишком скромной, как для грузового автомобиля. У ГАЗ-42 мощность составляла 30 л.с. против 50 у ГАЗ-ММ, ЗИС-13 развивал 48, а ЗИС-21 – 45 л.с. против законных 73 у ЗИС-5. На газогенераторном автомобиле можно было разогнаться до 40 – 50 км/ч, а запаса дров без В«подзаправкиВ» хватало всего на 60 – 70 км пути. Потерю мощности пытались компенсировать путем увеличением передаточного числа главной передачи. Например, у машины ГАЗ его подняли с 6,6 до 7,5.
Из-за низкой мощности двигателя и плохих тяговых показателей газогенератор не имело смысла устанавливать на такие машины, как тяжелый грузовик ЯГ-4 или полугусеничный ГАЗ-60. Массивная газогенераторная установка весила 400 – 500 кг, и грузоподъемность автомобиля сокращалась примерно на полтонны. Особенно ощутимо это было для автомобиля ГАЗ-ММ.
Но все-таки сделать газогенераторную установку более-менее компактной кое-кому удалось. На Западе существовали газогенераторные варианты легковых ФИАТов, В«ситроеновВ» и даже ДКВ. Советские инженеры сумели установить небольшие газогенераторы на легковые ГАЗ-А и В«эмкуВ». Но особой потребности в массовом выпуске легковых газогенераторов в СССР не было.
Недостатки(для удобства в кучку):
— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс В«дозаправкиВ» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.
Надергано из интернета.
Пост про ниву на дровах видел, но тут вообще о явлении.
8
Газогенераторные двигатели имеют один неоспоримый плюс — возобновляемое топливо, которое не проходит предварительной обработки. История использования машин с таким оборудованием достаточно длительная. Сейчас они не так популярны, как раньше, но понемногу все же возвращаются в строй.
Основные особенности
Газогенераторный двигатель имеет несколько неоспоримых положительных особенностей. Во-первых, топливо для устройства очень дешевое. Во-вторых, во время эксплуатации прибора появляется зола, которую можно использовать в качестве удобрения, к примеру. В-третьих, автомобилю не потребуется установка мощных химических аккумуляторов.
Газогенераторные двигатели доказали свое право на существование уже очень давно. На сегодняшний день их показатели, конечно же, сильно уступают новым моделям, работающим на бензине. Однако для большинства рядовых автолюбителей вполне могут подойти. Газогенераторная установка позволит развить скорость до 100 км/ч, приблизительный максимальный пробег составит около 100 км. Чтобы повысить этот параметр, придется возить на заднем сиденье дополнительные мешки с дровами и периодически вручную добавлять «топливо» в бак.
Как работает устройство
Принцип работы газогенератора — синтез газа. Это процесс, в ходе которого, горючий газ будет образовываться при сгорании органического материала. Для того чтобы запустить такой процесс, необходимо достичь нужной температуры. Синтез газа начинается при достижении показателя в 1400 градусов по Цельсию. В качестве топлива для газогенераторного двигателя могут использоваться торф, брикеты с углем и некоторые другие материалы. Однако, как показала практика, наиболее распространенным и удобным материалом в качестве топлива выступает древесина. Хотя здесь стоит отметить, что дрова обладают одним недостатком — уменьшение заряда рабочей смеси. Вследствие этого несколько понижается и мощность установки.
Можно добавить, что двигатель на дровах такого типа обычно используется с уже установленным ДВС.
Технические показатели
Если стоит выбор, к примеру, между покупкой автомобиля с традиционным двигателем или с газогенератором, то нужно подробно остановиться на рассмотрении технических данных второго варианта.
Масса двигателя на дровах достаточно большая, из-за чего теряется некоторая часть маневренности. Этот недостаток становится опасным, если развивать большую скорость. По этой причине доводить автомобиль даже до 100 км/ч не слишком разумное решение — придется ездить медленнее. Есть еще несколько важных технических данных такого оборудования.
Газовый двигатель, работающий на дровах, обладает большей степенью сжатия, чем грузовые бензиновые двигатели. Что касается мощности, то газогенератор, естественно, проигрывает бензиновому мотору.
Последнее отличие не в пользу газовой модели — это грузоподъемность, в которой он также проигрывает автомобилю с бензиновым двигателем.
Здесь еще важно отметить, что древесный газ характеризуется низкой энергетической ценностью, если сравнивать его с природным. Авто на дровах будет неизбежно терять в динамических свойствах, что также следует учитывать водителю такого транспортного средства.
Некоторые предпочитают установку объемного газогенератора осуществлять на прицеп, а не на сам автомобиль. В таком случае и быстро разогнаться не получится, и маневрировать особо не выйдет. Прицеп будет являться своеобразным ограничителем.
Плюсы газогенераторов
Если говорить о плюсах автомобилей с газогенераторными двигателями, то на первый план сразу же выдвигается возможность использования возобновляемого топлива без предварительной обработки. К примеру, чтобы преобразовать биомассу в пригодное топливо, допустим в этанол или биодизель, расходуется энергия, в том числе и энергия СО2. Причем в некоторых случаях для преобразования расходуется больше энергии, чем содержит изначальное вещество. Что же касается газогенераторного двигателя на дровах, то он не требует затрат энергии для производства своего топлива. Разве что нужно порезать и нарубить саму древесину для удобства загрузки.
Если сравнивать авто с генератором газа и электромобилем, то можно выделить такое преимущество: отсутствие необходимости в мощном химическом источнике энергии — аккумуляторе. Недостаток таких химических аккумуляторов в том, что у них есть свойство саморазрядки, а потому перед эксплуатацией такого авто его нужно не забывать заряжать. Если говорить об устройствах, генерирующих газ, то они сами по себе являются «натуральными» аккумуляторами.
При правильной сборке генератора газа и его работе в автомобиле, он будет значительно меньше засорять окружающую среду, чем любой бензиновый или дизельный двигатель. Конечно, если сравнивать с электромобилем, который вовсе не создает выбросов в атмосферу, газогенератор проигрывает. Однако для зарядки электрических авто требуется много энергии, а она все еще добывается традиционными способами, сильно загрязняющими воздух.
Минусы газогенераторов
Несмотря на определенные преимущества таких установок, их монтаж все еще остается очень индивидуальным решением и не самым оптимальным. Сама по себе установка, генерирующая газ, занимает много места, а весит она несколько сотен килограммов. При этом всю эту громоздкую конструкцию придется перевозить с собой. Большие габариты газовой установки обусловлены тем, что древесный газ характеризуется низким коэффициентом удельной энергии. Для примера можно сравнить удельную энергетическую ценность древесного газа, которая составляет 5,7 МДж/кг, с энергией, выделяющейся при сгорании бензина — 44 МДж/кг, или 56 МДж/кг — результатом сгорания природного газа.
Работа автомобиля на газогенераторе
При эксплуатации такого газового двигателя не получится достичь скорости и ускорения, возможных при использовании бензинового аналога. Проблема заключается в составе древесного газа. Он на 50 % состоит из азота, на 20 % из окиси углерода; оставшиеся 18 % — водород, 8 % — двуокись углерода, 4 % — метан. Азот, который занимает половину удельной массы газа, вовсе не способен поддерживать горение, а соединения на основе углерода снижают эффективность горения. Большое количества азота уменьшает общую мощность такого генератора примерно на 30-50 процентов. Углерод снижает скорость горения газа, из-за чего не удается достичь высоких оборотов. Как следствие этого, понижаются динамические показатели автомобиля.
Применение генератора газа
Следует отметить еще одну небольшую проблему газогенераторных автомобилей, которая связана конкретно с их применением. Она связана с тем, что установке необходимо выйти на рабочую температуру, и только потом можно ехать. Время, требуемое для выхода на такую температуру, примерно 10 минут. Кроме этого, перед следующей загрузкой дров необходимо каждый раз лопаткой вычищать золу. Еще одна проблема в обслуживании — образование смол. Сейчас она стоит уже не так остро, как раньше, но все равно приходится очищать фильтры от загрязнений. Все это приводит к необходимости частого обслуживания генератора.
Если говорить в общем об уходе за таким устройством, то можно сказать так: появляется много хлопот с обслуживанием, которые полностью отсутствуют у бензиновых двигателей.
Генераторная установка для ЗИС-21
Как уже говорилось, основной принцип работы генератора — превращение твердого топлива в газ, поступающего в цилиндры. Газогенераторный ЗИС-21 в основном работал на таком топливе, как дуб и береза. Иногда использовался бурый вид угля, так как он был наименее гигроскопичным и давал больше всего газа на выходе.
Что касается конструкции типового генератора газа для ЗИС-21, то состоял он из следующих элементов: непосредственно самого газогенератора, охладителя-очистителя, тонкого очистителя, смесителя и электрического вентилятора.
Работа установки на ЗИС
В верхней части генератора располагался бункер, в который загружалось твердое топливо. Непосредственно под самим бункером располагался топливник. Здесь осуществлялось сжигание древесины. По мере того как сгорало старое топливо, осуществлялась «автоматическая подача» новой древесины. На деле же она просто падала из бункера в топливник под собственным весом, когда освобождалось место. Сама газогенерирующая установка располагалась с левого борта автомобиля.
В этом же топливнике происходило и образование окиси углерода из-за протягивания воздуха сквозь горящее топливо. Просасывание кислорода происходило либо за счет разрежения в цилиндрах, либо за счет работы электрического вентилятора. Эти методы являлись принудительными, но были установки и с естественной тягой воздуха. Однако в таком случае на подготовку к запуску могло уйти до часа времени.
Под топливником располагался зольник, как в любой обычной печи. Здесь скапливались продукты сгорания. Каждые 80-100 км было необходимо очищать его от золы. Однако здесь справедливо будет отметить, что этот факт доставлял проблемы лишь водителю транспортного средства.
Путь газа в установке и очистка
Весь полученный в процессе сгорания дров газ поступал в рубашку, которая окружала бункер. Таким образом достигался подогрев этого отсека. Это было необходимо, чтобы предварительно просушить всю древесину, подготовленную для сжигания. Далее стоит отметить, что после выхода из генератора газ имел температуру примерно 110-140 градусов. Поэтому он должен был проходить через секции радиатора. Там он не только понижал свою температуру, но и попутно очищался от тяжелых химических примесей.
Что касается очистки, то она происходила таким образом. Секции очистителя-теплообменника представляли собой внутренние перфорированные трубы. Эта конструкция была схожа с нынешними выхлопными системами. Горячий газ сильно расширялся, из-за чего терял скорость течения. Проходя через лабиринты труб, он еще сильнее замедлялся. Примеси отсеивались от него и оставались на внутренних стенках наружных труб обменников тепла. После этого следовал тонкий очиститель.
Вывод
В конце можно подвести следующий итог. Характеристики газогенераторных двигателей достаточно слабые, если сравнивать их с бензиновыми. Установка имеет некоторые преимущества, однако она достаточно неудобна в эксплуатации, требует постоянного и тщательного ухода. Кроме того, она не позволяет развивать большую скорость и снижает маневренность. По этим причинам автомобили с такими газовыми генераторами не пользуются практически большой популярностью.
Машина времени14 августа 2018 в 02:13
Отгремела Великая Отечественная война. Помимо множества проблем, свалившихся на СССР, была и острая нехватка жидкого топлива. Ситуация требовала экстренного решения. И тогда советский автопром пошел по новому для себя пути – газогенераторному.
Послевоенный кризис
В конце ноября 1941 года из авиабомбового завода №316 было создано предприятие по разработке и производству силовых агрегатов для авто, а также трансмиссий к танкам. Так, благодаря решению Государственного Комитета Обороны появился Миасский завод.
Задачи и сроки их исполнения перед предприятием поставили жесткие. Поэтому уже в начале весны 1942 года заводчане выдали готовое поршневое кольцо для нового двигателя ЗиС-5. А их коллеги еще спустя короткое время продемонстрировали трансмиссию. Вообще, только за тот год предприятие произвело порядка 9 тысяч моторов и примерно 15 тысяч коробок передач. Кроме этого на заводе трудились специалисты конструкторско-экспериментального отдела (с февраля 1942 года) под началом инженера А.С.Айзенберга.
Сборка ЗиС-5
Любопытно, что пока шла война, КЭО занимался лишь подготовкой документации. Его звездный час пришелся на послевоенные годы. Тогда страна начала испытывать сильный бензиновый голод. Образовавшийся дефицит требовалось срочно устранить. И тогда на арену вышел Уральский автомобильный завод (тот самый, расположенный в городе Миасс). Хотя многие советские предприятия пытались решить проблему, разведывая газогенераторное направление, роль ведущей скрипки отдали именно УралАзу.
По решению Наркомата (ноябрь 1946 года) предприятие начало налаживать выпуск грузовиков на базе ЗиС-5, оснащенных газогенераторной установкой.
Надо сказать пару слов о том, что представляла собой газогенераторная установка. Она состояла из самого газогенератора обращенного процесса газификации с центробежным нагнетателем. Кроме этого в состав системы входили: циклонный очиститель для грубой очистки газа (до него – охладитель), фильтры для тонкой очистки, вентилятор розжига, смеситель и предпусковой подогреватель (с начала 50-х годов).
Газогенератор ставили справой стороны. Поэтому пассажирская дверь являлась по совместительству и водительской. А вот фильтры тонкой очистки размещали с противоположной стороны. Газогенератор и центробежный нагнетатель соединялись друг с другом при помощи трубы, подводящей воздух. А крепились они (плюс фильтр) на раме двумя балками. Охладитель ставили под платформой вдоль рамы. Фильтры тонкой очистки, смеситель и вентилятор соединялись специальной составной трубой. Кстати, а вентилятор и подогреватель создатели «прописали»слева, немного выше подножки.
Вся эта «адская машина» в печи перерабатывала дрова, получая энергию, которая и приводила в действие авто.
Первопроходец
Пионером стал ЗиС-21А. Его оснастили деревянной кабиной и выгнутыми крыльями. В движение первопроходца приводил газ, получаемый из сожженных поленьев. А поскольку тогда еще точно не знали, каким аппетитом отличается автомобиль, испытания проходили в лесистых районах с налаженной инфраструктурой. Именно древесина стала единственным источником энергии для всего газогенераторного направления. Надо сказать, что в качестве топлива использовались не только поленья, но и любые отходы лесной промышленности.
ЗиС-21А
Единственно требование, которое к ним предъявлялось – отсутствие гнили. Опытным путем удалось установить, что наилучшие результаты автомобили показывали, питаясь дубом, ясенем, буком и березой. Чурки, приготовленные для заправки печки были прямоугольными, а ширина стороны равнялась 6 сантиметрам. Чуть хуже «переваривались» опилки, шишки, солома, кора и лузга. Перед применением их спрессовывали в подходящие по размерам брикеты.
Пока шли испытания, на предприятии соорудили особые сушилки, точнее шахтно-вертикальные печи. С их помощью удавалось получить порядка 20 кубометров годного для использования топлива.
ЗиС-21А
Казалось бы, для нашей страны, богатой лесами, газогенераторные установки – выход из затруднительного положения. Но вскоре вскрылись проблемы. Во-первых, грузовики, питавшиеся «шишками» могли увезти лишь 2,5 тонны. Поскольку им приходилось на себе возить большой запас древесины. Во-вторых, поленья не могли обеспечить работу мотора на полную мощность. Так что выхлоп составлял 45 л.с., а скорость не превышала скромные 48 км/ч. В-третьих, водителю часто приходилось останавливаться, чтобы подбросить в печь новые дрова, а заодно кочергой перемешать догорающие.
ЗиС-21А
Но сдаваться конструкторы и инженеры не собирались. Они всеми силами пытались модернизировать не только сами газогенераторные установки, но и автомобили. Первым делом они усилили шкворневой узел переднего моста и полуоси заднего, а также редуктора. Затем внедрили гидравлический привод тормозов на все колеса. В силовой агрегат установили сменные тонкостенные вкладыши опор коленчатого вала и шатунов. После этого прокачали машины модернизированным центробежно-вакуумным автоматом опережения зажигания.
А топливный бак переместили из-под водительского кресла на левый лонжерон рамы, то есть под грузовую платформу. И уже в 1949 году Центральный научно-исследовательский институт механизации и энергетики лесной промышленности Советского Союз начинает работу над новой установкой. Вскоре комиссии был представлена новая древесно-угольная система – ЦНИИМЭ-16. Ее решено было ставить на ЗиС-21А. После многочисленных испытаний, грузовик был отправлен по маршруту Москва – Минск и обратно. Автомобиль не подвел. Единственный минус – средняя скорость, которая составила 40 км/ч.
ЗиС-21А
В нетронутом состоянии ЦНИИМЭ-16 продержалась недолго. На боевом посту ее сменила установка Г-78А. А ЗиС-21А уступил место УралЗиСу-352Л. Что касается системы Г-78А, ее главным преимуществом перед предшественником стало то, что она могла перерабатывать и сырую древесину, и гнилую. Да и весила она сотню килограммов дешевле. Еще одно отличие заключалось в предварительной очистке газа, которая проходила при использовании циклона. У предыдущей версии за этот процесс отвечал специальный охладитель. Кроме этого УралЗиС-352 получил предпусковой прогрев силового агрегата, который также работал на генераторном газе.
УралЗиС-352
Грузовик весил более 3,5 тонн, а его грузоподъемность осталась на прежнем уровне – 2,5 тонны. Зато двигатель стал чуточку мощнее – 48 л.с., что позволяло автомобилю развить максимальную скорость в 53 км/ч. Но для этого требовалось много топлива. Поэтому на заводе рекомендовали не разгоняться свыше 47 км/ч.
А теперь пару слов о прожорливости. В среднем на 100 километров пробега при скорости в 45-47 км/ч газогенераторный грузовик потреблял 150-160 килограммов поленьев или брикетов. Соответственно, чем выше была его скорость, тем больше уходило древесного «топлива».
УралЗиС-352Л
…По большому счету, УралЗиС-352Л стал последним серийным грузовиком, работавшим на дровах. Его производство продолжалось с 1952 по 1956 годы. За это время было создано порядка 10 тысяч таких удивительных автомобилей.
Правда, еще 1955 году полным ходом шла работа над новым газогенераторным грузовиком — УралЗиС-356. Но приказ сверху не позволил проекту шагнуть дальше бумаги.
Конвейер по сборке УралЗиС-352Л остановился в самом начале 1956 года. На этом эпоха газа, получаемого из древесины, была официально завершена. В стране ликвидировали дефицит привычного топлива, так что газогенераторное направление признали тупиковым.
Павел Жуков
Подписывайтесь на нас в Facebook и Вконтакте!
Материалы по теме
Используемые источники:
- http://wiki.zr.ru/газогенератор
- https://pikabu.ru/story/avto_na_drovakh_4295396
- https://fb.ru/article/455064/gazogeneratornyie-dvigateli-printsip-rabotyi-tehnicheskie-harakteristiki-toplivo
- https://autorambler.ru/mashinavremeni/toplivnyi-golod-drova-vmesto-benzina.htm