В связи с высокими ценами на промышленное отопительное оборудование многие умельцы собираются делать своими руками экономичный нагреватель вихревой теплогенератор.
Такой теплогенератор представляет собой всего лишь немного видоизмененный центробежный насос. Однако, чтобы собрать самостоятельно подобное устройство, даже имея все схемы и чертежи, нужно иметь хотя бы минимальные знания в данной сфере.
Принцип работы
</p>
Теплоноситель (чаще всего используют воду) попадает в кавитатор, где установленный электродвигатель производит его раскручивание и рассечение винтом, в результате образуются пузырьки с парами (это же происходит, когда плывет подводная лодка и корабль, оставляя за собой специфический след).
Двигаясь по теплогенератору, они схлопываются, за счет чего выделяется тепловая энергия. Такой процесс и называется кавитацией.
Исходя из слов Потапова, создателя кавитационного теплогенератора, принцип работы данного типа устройства основан на возобновляемой энергии. За счет отсутствия дополнительного излучения, согласно теории, КПД такого агрегата может составлять около 100%, так как практически вся используемая энергия уходит на нагрев воды (теплоносителя).
Создание каркаса и выбор элементов
Чтобы сделать самодельный вихревой теплогенератор, для подключения его к отопительной системе, потребуется двигатель.
И, чем больше будет его мощность, тем больше он сможет нагреть теплоноситель (то есть быстрее и больше будет производить тепла). Однако здесь необходимо ориентироваться на рабочее и максимальное напряжение в сети, которое к нему будет подаваться после установки.
Производя выбор водяного насоса, необходимо рассматривать только те варианты, которые двигатель сможет раскрутить. При этом, он должен быть центробежного типа, в остальном ограничений по его выбору нет.
Также нужно приготовить под двигатель станину. Чаще всего она представляет собой обычный железный каркас, куда крепятся железные уголки. Размеры такой станины будут зависеть, прежде всего, от габаритов самого двигателя.
После его выбора необходимо нарезать уголки соответствующей длины и осуществить сварку самой конструкции, которая должна позволить разместить все элементы будущего теплогенератора.
Далее нужно для крепления электродвигателя вырезать еще один уголок и приварить к каркасу, но уже поперек. Последний штрих, в подготовке каркаса – это покраска, после которой уже можно крепить силовую установку и насос.
Конструкция корпуса теплогенератора
Такое устройство (рассматривается гидродинамический вариант) имеет корпус в виде цилиндра.
Соединяется с отопительной системой он через сквозные отверстия, которые у него находятся по бокам.
Но основным элементом этого устройства является именно жиклер, находящийся внутри этого цилиндра, непосредственно рядом с входным отверстием.
[warning]Обратите внимание: важно, чтобы размер входного отверстия жиклера имел размеры соответствующие 1/8 от диаметра самого цилиндра. Если его размер будет меньше этого значения, то вода физически не сможет в нужном количестве через него проходить. При этом насос будет сильно нагреваться, из-за повышенного давления, что также будет оказывать негативное влияние и на стенки деталей.[/warning]Как изготовить
Для создания самодельного генератора тепла понадобится шлифовальная машинка, электродрель, а также сварочный аппарат.
Процесс будет происходить следующим образом:
- Сначала нужно отрезать кусок достаточно толстой трубы, общим диаметром 10 см, а длиной не более 65 см. После этого на ней нужно сделать внешнюю проточку в 2 см и нарезать резьбу.
- Теперь из точно такой же трубы необходимо сделать несколько колец, длиной по 5 см, после чего нарезается внутренняя резьба, но только с одной её стороны (то есть полукольца) на каждой.
- Далее нужно взять лист металла толщиной, аналогичной с толщиной трубы. Сделайте из него крышки. Их нужно приварить к кольцам с той стороны, где у них нет резьбы.
- Теперь нужно сделать в них центральные отверстия. В первой оно должно соответствовать диаметру жиклера, а во второй диаметру патрубка. При этом, с внутренней стороны той крышки, которая будет использоваться с жиклером, нужно сделать, используя сверло, фаску. В итоге должна выйти форсунка.
- Теперь подключаем ко всей этой системе теплогенератор. Отверстие насоса, откуда вода подается под давлением, нужно присоединить к патрубку, находящемуся возле форсунки. Второй патрубок соедините со входом уже в саму отопительную систему. А вот выход из последней подключите ко входу насоса.
Таким образом, под давлением, создаваемым насосом, теплоноситель в виде воды начнет проходить через форсунку. За счет постоянного движения теплоносителя внутри этой камеры он и будет нагреваться. После этого она попадает уже непосредственно в систему отопления. А чтобы была возможность регулировать получаемую температуру, нужно за патрубком установить шаровой кран.
Изменение температуры будет происходить при изменении его положения, если он будет меньше пропускать воды (будет находиться в полузакрытом положении). Вода будет дольше находиться и двигаться внутри корпуса, за счет чего её температура увеличится. Именно таким образом и работает подобный водонагреватель.
Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.
Содержание
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Пассивные тангенциальные ВТГ
Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.
При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.
Пассивные аксиальные теплогенераторы
Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.
Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.
Активные теплогенераторы
Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.
При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.
Назначение
На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:
- Отопления помещений, как в бытовых, так и в производственных зонах;
- Нагревания жидкости для осуществления технологических операций;
- В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
- Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
- Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
- Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
- Парогенерации.
С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.
Преимущества и недостатки
В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:
- Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
- Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
- Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
- Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
- Нет необходимости организации системы охлаждения;
- Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
- Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
- Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;
Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:
- Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
- Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
- Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
- Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Критерии выбора
При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:
- Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
- Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
- Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
- Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
- Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
- Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.
Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:
Таблица: характеристики некоторых моделей вихревых генераторов
Установленная мощность электродвигателя, кВт |
55 |
75 |
90 |
110 |
160 |
Напряжение в сети, В | 380 | 380 | 380 | 380 | 380 |
Обогреваемый объем до, куб.метры. | 5180 | 7063 | 8450 | 10200 | 15200 |
Максимальная температура теплоносителя,оС |
95 |
95 |
95 |
95 |
95 |
Масса нетто, кг. | 700 | 920 | 1295 | 1350 | 1715 |
Габаритные размеры: |
2000 700 775 |
2000 700 775 |
2000 700 775 |
2400 980 775 |
3200 1000 918 |
— длина мм
— ширина мм. — высота мм. |
|||||
Режим работы | автомат | автомат | автомат | автомат | автомат |
Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.
ВТГ своими руками
Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:
- При помощи дрели просверлите несквозную перфорацию на диске;
- Закройте диск кожухом, проследите за надежной герметизацией камеры;
- Соедините вал электродвигателя с валом вращающегося диска;
- Установите электродвигатель с камерой на станину и прочно закрепите;
- Подведите к теплогенерирующей камере трубы для подачи холодной и отвода горячей воды;
- Подключите к двигателю и насосу для прокачки жидкости по системе электропитание от внешнего источника.
Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.
В современных условиях приобретение собственного устройства по производству и подаче тепла обходится покупателям в достаточно крупную сумму. Для экономии средств или при отсутствии возможности приобрести теплоисточник в магазине есть резонные основания сконструировать теплогенератор своими руками. Существует несколько разновидностей подобныхпроектов. Выбор зависит от технических возможностей владельца или задач, которые требуется решить с помощью теплогенерирующей системы.
Преимущества самодельного теплопроизводства
В целом есть два типа устройств: статические и роторные. Если в первом варианте в основе конструкции есть сопло, то другие машины создают кавитацию с помощью ротора. Эти вихревые конструкции можно сравнить между собой и выбрать подходящий вариант для сборки.
Теплогенератор, своими руками сконструированный, поможет обеспечить комфортным температурным режимом загородный дом, дачу, отдельный коттедж, квартиру – при отсутствии централизованного отопления, его дефектах, перебоях или авариях. Также подобные устройства помогают компенсировать расходы на тепло, выбрать оптимальный вариант энергоснабжения. Они несложны в конструкционном плане и экономичны, экологически безопасны.
Как сделать теплогенератор своими руками?
Для сборки потребуются следующие материалы и инструменты:
Для систем разного типа могут потребоваться дополнительные комплектующие. Но в целом самодельные отопительные приборы вполне доступны для конструирования и настройки всем желающим.
Кавитационная конструкция
Кавитационный теплогенератор своими руками можно сделать на основе центробежного насоса, который часто имеется в ванной, скважине, системе водоснабжения коттеджа. Низкая эффективность такого насоса может быть преобразована в энергию кавитационного нагревателя. Произойдет переход механической энергии в тепловую. Этот принцип часто используют в промышленности.
Кавитационный теплогенератор своими руками изготавливается на основе насоса, нагнетающего давление над соплом. Недостаток кавитацинного прибора – высокий уровень шума, большая мощность, неуместная в небольших помещениях, редкие материалы, габариты – даже миниатюрная модель займет 1,5 квадратных метра.
Обогрев на дровах
Теплогенератор на дровах, своими руками сделанный, обеспечит стабильный обогрев помещений при отсутствии централизованного отопления и наличия достаточного количества древесного топлива. Как бы ни развивались технологии и строительные методы, дровяная печь, камин спасут при перебоях с теплоснабжением.
Для отопления на дровах осуществляется монтаж камина или традиционной печки. Но такие системы требуют тщательного соблюдения норм безопасности. Важно определиться с местом установки печи – массивные агрегаты не всегда можно разместить в дачных домиках.
Сделать теплогенератор на дровах своими руками – это хорошее решение при необходимости автономного обогрева комнат. Иногда это действительно единственный возможный вариант отопления.
Устройство Потапова
Теплогенератор Потапова своими руками можно сделать с использованием следующих материалов:
— шлифовальная машина для углов; — сварочный прибор; — дрель и сверла; — накидные ключи на 12 и 13; — разные болты, гайки, шайбы; — металлические уголки; — краски и грунтовки.
Теплогенератор Потапова, своими руками сделанный, позволяет вырабатывать тепло на основе электрического двигателя с использованием насоса. Это очень экономичный вариант, изготовить который достаточно просто из обычных деталей. Двигатель выбирают в зависимости от существующего напряжения – 220 или 380 В. С него начинают сборку, закрепляя на станине. Выполняется металлический каркас из угольника, сварка и болты, гайки помогают закрепить всю конструкцию. Делаются отверстия для болтов, внутри размещается двигатель, каркас покрывают краской. Затем подбирают центробежный насос, который будет раскручиваться двигателем. Насос устанавливают на раме, однако в данном случае потребуется соединительная муфта с токарного станка, которую можно заказать на заводе. Важно утеплить генератор специальным кожухом из жестяных листов или алюминия.
Генератор Френетта
Теплогенератор Френетта своими руками делают многие любители технических экспериментов – этот агрегат известен невероятно высоким КПД и большим разнообразием моделей. Однако многие из этих тепловых насосов достаточно дороги.
Генератор на магните
Магнитные системы обогрева относятся к вихревому типу и работают на основе индукционного нагревателя. В процессе функционирования образуется электромагнитное поле, чью энергию нагреваемые объекты поглощают и преобразовывают в тепловую. В основе такого агрегата лежит индукционная катушка – многовитковая цилиндрическая, при проходе через которую электрический ток создает магнитное поле переменного состояния.
Магнитный теплогенератор своими руками делают из элементов: сопло и манометр на выходе, термометр с гильзами, краны и индукционные элементы. Если разместить нагреваемый объект вблизи такого агрегата, создаваемый поток магнитной индукции будет пронизывать нагреваемый объект. Линии электрического поля располагаются перпендикулярно направлению магнитных частиц и идут по замкнутому кругу. В процессе расхождения вихревых потоков электричества энергия трансформируется в тепловую – происходит нагревание объекта.
Магнитный теплогенератор, своими руками изготовленный (с инвертором), позволяет использовать силу магнитных полей для запуска насоса, быстро прогреть помещение и любые вещества до высоких температур. Такие нагреватели могут не только нагреть воду до нужной температуры, но и расплавить металлы.
Генератор на дизеле
Дизельный теплогенератор, своими руками собранный, поможет эффективно решить проблему обогрева непрямым способом. Весь обогревательный процесс в таких агрегатах полностью автоматизирован, дизельный прибор можно использовать в покрасочных камерах и промышленных нуждах. Основной вид топлива в данном случае – дизель или керосин. Устройство представляет собой пушку, которая формируется из корпуса (кожуха), топливного бака и присоединенного насоса, а также очистного фильтра и камеры сгорания. Топливный бак помещают внизу агрегата для удобства подачи ресурса.
Дизельный теплогенератор, своими руками сделанный, поможет эффективно и оперативно обогреть помещение достаточно экономичным способом. Также топливом может служить солярка. Дизельные агрегаты имеют форсунку, которая распыляет топливо по мере его выгорания, но в некоторых вариантах подача может производится капельным методом. При расчете на непрерывную работу заправлять генератор необходимо дважды в течение суток.
Испытание конструкции
Теплогенератор, своими руками изготовленный, будет работать максимально эффективно, если провести предварительные испытания всей системы и исправить возможные дефекты: — все поверхности должны быть защищены краской; — корпус должен быть из толстого материала из-за очень агрессивных процессов кавитации; — входные отверстия должны быть разного размера – так можно будет регулировать производительность; — гаситель колебаний нужно регулярно менять. Лучше иметь специальный лабораторный участок, где будут проходить тесты генераторов. Оптимальный вариант – при котором вода нагревается сильнее за одинаковые отрезки времени, этому прибору можно отдать предпочтение и в дальнейшем его совершенствовать.
Отзывы владельцев
На сегодняшний день большое количество владельцев домов уже выполнило разработку собственный агрегатов. Если сделать теплогенератор своими руками, то, по мнению большинства умельцев, можно действительно получить экономичный вариант для обогрева помещения. Делать эти агрегаты можно буквально из подручных материалов, что позволяет всем желающим обзавестись собственным источником тепла. Некоторые модели требуют наличия заводских деталей, которые можно изготовить на заказ в промышленных условиях.
По эксплуатационным качествам вихревой теплогенератор собранный своими руками несколько превосходит статорный. У него теплоотдача на 30% больше. И хотя сегодня на рынке такое оборудование представлено различными модификациями, отличающимися роторами и соплами, суть их работы от этого не меняется. Исходя из этих параметров собирать теплогенератор своими силами лучше все же вихревого типа. Как это сделать будет рассмотрено ниже.
Комплектация и принцип работы
Самой простой конструкцией обладает прибор, состоящий из следующих элементов:
- Ротора, выполненного из углеродистой стали;
- Статора (сварного или монолитного);
- Прижимной втулки с внутренним диаметром 28 мм;
- Стального кольца.
Принцип работы генератора рассмотрим на примере кавитационной модели. В нем вода поступает в кавитатор, после чего он раскручивается двигателем. В процессе работы узла происходит схлопывание пузырьков воздуха в теплоносителе. При этом попавшая в кавитатор жидкость разогревается.
Для работы кавитационного теплогенератора, собранного своими руками, используя найденные в сети чертежи устройства следует помнить, что ему требуется энергия, которая расходуется на преодоление силы трения в устройстве, образование звуковых колебаний, нагревание жидкости. Кроме того, прибор обладает практически 100% КПД.
Инструмент, необходимый для сборки агрегата
С нуля собрать такой агрегат самостоятельно невозможно, так как для его изготовления потребуется задействовать технологическое оборудование, которого у домашнего мастера просто нет. Поэтому своими руками обычно собирают лишь агрегат, в некотором роде повторяющий вихревой теплогенератор. Его называют прибором Потапова.
Однако даже для сборки этого устройства необходимо оборудование:
- Дрель и набор сверл для нее;
- Сварочный аппарат;
- Машинка для шлифовки;
- Ключи;
- Крепеж;
- Грунтовка и малярная кисть.
Кроме этого потребуется приобретение двигателя, работающего от сети в 220 В и неподвижная основа для установки на ней самого прибора.
Этапы изготовления генератора
Сборка устройства начинается с подключения к насосу, желательного напорного типа, патрубка смешивания. Его присоединяют, используя специальный фланец. В центре донышка патрубка выполняется отверстие, по которому будет выводиться горячая вода. Чтобы контролировать ее поток используется тормозящее приспособление. Оно находится перед донышком.
Но так как в системе циркулирует и холодная вода, то ее течение должно также регулироваться. Для этого используют дисковый выпрямитель. При остывании жидкости она направляется к горячему концу, где в специальном смесителе происходит ее смешивание с нагретым теплоносителем.
Далее переходят к сборке конструкции вихревого теплогенератора своими руками. Для этого использую шлифовальную машинку нарезают угольники из которых собирается основная конструкция. Как это сделать видно на расположенном ниже чертеже.
Собирать конструкцию можно двумя способами:
- Используя болты и гайки;
- При помощи сварочного аппарата.
В первом случае приготовьтесь к тому, что придется выполнить отверстия под крепеж. Для этого нужна дрель. В процессе сборки необходимо учитывать все размеры – это поможет получить агрегат с заданными параметрами.
Самый первый этап – это создание станины, на которой устанавливается двигатель. Ее собирают из железных уголков. Размеры конструкции зависят от размеров двигателя. Они могут отличаться и подбираются под конкретное устройство.
Чтобы закрепить двигатель на собранной станине потребуется еще один угольник. Он будет выполнять роль поперечины в конструкции. При выборе двигателя специалисты рекомендуют обращать внимание на его мощность. От этого параметра зависит количество нагреваемого теплоносителя.
Смотрим видео, этапы сборки теплогенератора:
Последний этап сборки – это покраска рамы и подготовка отверстий для установки агрегата. Но прежде, чем приступать к монтажу насоса следует рассчитать его мощность. Иначе двигатель может не справиться с запуском установки.
После того, как все комплектующие подготовлены насос присоединяется к отверстию из которого поступает под давлением вода и агрегат готов к работе. Теперь, используя второй патрубок его подсоединяют к отопительной системе.
Эта модель одна из самых простых. Но если есть желание регулировать температуру теплоносителя, то устанавливают запирающее устройство. Также могут использоваться электронные устройства контроля, но следует учитывать, что стоят они достаточно дорого.
Подключение прибора к системе происходит следующим образом. Сначала его подсоединяют к отверстию, по которому поступает вода. Она при этом находится под давлением. Второй патрубок используется для непосредственного подсоединения к системе отопления. Чтобы изменять температуру теплоносителя за патрубком находится запирающее устройство. При его перекрытии температура в системе постепенно увеличивается.
Могут использоваться и дополнительные узлы. Однако стоимость такого оборудования достаточно высокая.
Смотрим видео, конструкция после изготовления:
Корпус будущего генератора можно выполнить сварным. А детали к нему по вашим чертежам выточит любой токарь. Обычно он имеет форму цилиндра, закрытого с обеих сторон. По сторонам корпуса выполняются сквозные отверстия. Они нужны для подсоединения агрегата к системе отопления. Внутри корпуса помещают жиклер.
Наружную крышку генератора обычно изготавливают из стали. Затем в ней выполняются отверстия под болты и центральное, к которому впоследствии приваривается штуцер для подачи жидкости.
Советы специалистов
На первый взгляд кажется, что ничего сложного в сборке теплогенератора своими руками на дровах нет. Но на самом деле эта задача не такая уже и легкая. Конечно, если не спешить и хорошо изучить вопрос, то справиться можно. Но при этом очень важна точность размеров выточенных деталей. И особого внимания требует изготовление ротора. Ведь в случае, если он будет выточен неправильно агрегат станет работать с высоким уровнем вибрации, что негативно скажется на всех деталях. Но большего всего в такой ситуации страдают подшипники. Они будут очень быстро разбиваться.
Только правильно собранный теплогенератор будет работать эффективно. При этом его КПД может достигать 93%. Поэтому специалисты советуют:
- Все детали выполнять из толстых материалов;
- Их поверхности должны быть окрашены;
- Стоит сразу сделать несколько запасных крышек с различными размерами отверстий, чтобы было удобно подбирать диаметр.
После сборки нужно включит генератор и засечь время, которое ему потребуется для нагрева воды. И если оно вас не устраивает, то внесите изменения в конструкцию.
Содержание
Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.
Схема устройства вихревой теплосистемы.
Так как нет исследований по определению параметров изделия в зависимости от мощности насоса, то будут освещены примерные размеры.
Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.
Главное это двигатель
Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.
Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.
Чертеж вихревого теплогенератора.
Список инструментов и материалов:
- угловая шлифовальная машинка;
- сварочный аппарат;
- электродрель;
- набор сверл;
- рожковые или накидные ключи на 12 и на 13;
- болты, гайки, шайбы;
- металлический уголок;
- грунтовка, краска, кисть малярная.
- Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант — сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
- Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
- Сделайте покраску рамы.
- Просверлите отверстия в каркасе под болты и установите двигатель.
Установка насоса
Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности. На что надо обратить внимание?
- Насос должен быть центробежным.
- Ваш двигатель сможет его раскрутить.
Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.
Схема гидровихревого теплогенератора.
Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.
Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.
Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.
- Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
- Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
- Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
- Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
- Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.
Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.
Пути повышения производительности
Схема теплового насоса.
В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.
Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.
Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.
- Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
- Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
- Сделайте крышки с одной и другой стороны.
- Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
- Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.
На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.
Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.
Утепление генератора
Схема подключения теплогенератора к системе отопления.
Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.
Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.
- Соедините его при помощи замка, который используют жестянщики для водосточных труб.
- Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
- Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
- Поместите устройство в кожух, закройте крышками.
Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).
Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.
Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.
Схема стационарного теплогенератора.
Инструменты: сварочный аппарат, угловая шлифовальная машинка.
Материалы: листовой металл или полосовое железо, толстостенная труба.
Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.
- Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
- Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
- Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.
Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.
Советы, к которым лучше прислушаться
Схема устройства тепловой пушки.
- Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
- Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
- Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
- Это же относится и к гасителю колебаний. Его также можно видоизменять.
Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.
Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.
Используемые источники:
- https://teplo.guru/eko/vihrevoy-teplogenerator-svoimi-rukami.html
- https://www.asutpp.ru/vixrevoj-teplogenerator.html
- https://fb.ru/article/210463/kak-sdelat-teplogenerator-svoimi-rukami
- http://generatorvolt.ru/alternativnye-istochniki/delaem-vmeste-teplogenerator-svoimi-rukami.html
- http://dekormyhome.ru/remont-i-oformlenie/kak-izgotovit-vihrevoi-teplovoi-generator-potapova-svoimi-rykami.html