Несмотря на широкий ассортимент современных теплообменных приборов отопления, привычные всем чугунные радиаторы-«гармошки» вовсе не собираются уходить в небытие. Мало того, производители таких батарей не испытывают никаких проблем со сбытом. Это объясняется отменной надежностью изделий, которые могут служить по полувеку и больше, и высокими показателями теплоотдачи.
Как правильно определиться с количеством секций подобных радиаторов, чтобы обеспечить в помещении комфортные условия проживания? Все зависит от особенностей комнаты, где их планируется установить, и от параметров самих батарей – они могут существенно различаться. Прийти к правильному решению поможет наш калькулятор расчета количества секций чугунного радиатора МС.
Цены на чугунные радиаторы
радиатор чугунный
Расчет требует некоторых пояснений – они будут приведены ниже калькулятора.
Калькулятор расчета количества секций чугунного радиатора МС
Разъяснения по проведению вычислений
Алгоритм расчета построен на том, что для отопления 10 м² требуется 1 кВт тепловой энергии. Понятно, что это соотношение – весьма условно, поэтому оно будет корректироваться целым рядом коэффициентов, учитывающих специфику помещения.
- Площадь помещения – вычислить несложно, особенно если комната имеет традиционную прямоугольную конфигурацию.
Помощь в расчете площадей помещений сложной формы
Если комната имеет более сложную форму, то можно применить несколько различных подходов. Подробнее об этом, с рассмотрением возможных примеров и с калькуляторами расчета – в статье про вычисление площадей помещений.
- Количество внешних стен. Чем их больше, тем существеннее теплопотери, и это учтено программой расчета.
- Немалое значение имеет расположение внешних стен комнаты относительно сторон света. Причину, наверное, пояснять не требуется.
- Если стена расположена с наветренной стороны относительно традиционных зимних ветров, то она будет выхолаживаться быстрее – стало быть, необходим запас тепловой мощности для компенсации этого явления.
- «Уровень мороза» характеризует климатические особенности региона. В этой графе указываются не аномальные температуры, а вполне обычные для самой холодной декады зимы.
- Если стена утеплена в полной мере, на основании проведенных теплотехнических расчетов, то уровень термоизоляции может считаться качественным. Вообще неутепленные стены, в принципе, даже рассматриваться не должны, так как отопление станет переводом денег на энергоресурсы, и все равно в доме не достичь комфортного микроклимата.
- Чем выше потолки, тем значительнее объем комнаты, и тем больше требуется тепловой энергии для ее прогрева.
- Две следующие графы учитывают соседство комнаты по вертикали – сверху и снизу, то есть, по сути, теплопотери через потолок и пол.
- Далее – несколько полей касающихся наличия и особенностей окон. Естественно, что от этих параметров напрямую зависит общая потребность помещения в тепловой энергии для компенсации возможных теплопотерь.
- Если в помещении имеется постоянно используемая дверь, выходящая на улицу, в холодный подъезд или на неотапливаемый балкон, то любое ее открытие сопровождается притоком холодного воздуха. Это необходимо компенсировать определенной добавкой мощности.
- Особенности конкретной системы отопления могут повлиять на схему врезки радиаторов в контур. А это, в свою очередь, отражается на теплообменных характеристиках батарей. Необходимо выбрать из представленных примеров предполагаемую схему врезки.
- Радиатор, размещенный на стене открыто, спрятанный в нишу или прикрытый кожухом – все они будут серьезно различаться по своей теплоотдаче. Это учтено в специальном поле ввода — необходимо выбрать из списка особенности установки.
- Наконец, сами по себе модели чугунных радиаторов МС различаются линейными параметрами и, соответственно, своей удельной тепловой мощностью в пересчете на одну секцию. В предлагаемом списке представлены самые распространение типы чугунных батарей МС, а их характеристики уже заложены в программу расчета.
- Результат покажет рекомендуемое количество секций для установки в конкретном помещении.
Подробнее о чугунных радиаторах типа МС
Если есть желание установить эти, хоть и не выдающейся красоты, но зато высоконадежные батареи, рекомендуется познакомиться с ними поближе. Подробнее о чугунных радиаторах МС-140 и их «собратьях» — в специальной публикации нашего портала.
Секция (радиатора отопления) — наименьший конструктивный элемент батареи радиатора отопления.
Обычно представляет собой полую литую из чугуна или алюминия двутрубчатую конструкцию, оребрённую для улучшения термопереноса способами излучения и конвекции.
Секции радиатора отопления соединяются между собой в батареи при помощи радиаторных ниппелей, подвод и отвод теплоносителя (пара или горячей воды) производится через ввёрнутые муфты, лишние (неиспользуемые) отверстия заглушаются резьбовыми заглушками в которых иногда вворачивается кран для дренажа воздуха из системы отопления. Окраска собранной батареи производится, как правило, после сборки.
Калькулятор количества секций в радиаторов отопления
Тип радиатораМощьность 1 секции (Вт)Длина помещенияШирина помещенияВысота потолкаВид остекленияКоличество наружных стенТеплоизоляция стенМинимальная температура улицыТип помещения над рассчетным8423Было ли это полезно?
Онлайн калькулятор для расчета необходимого количества секций радиатора для отопления заданного помещения с известной теплоотдачей
Формула расчета количества секций радиатора
N = S/t*100*w*h*r
где,
- N — количество секций радиатора;
- S — площадь комнаты;
- t — количество тепла для обогрева комнаты;
- w — коэффициент окон
- Обычное остекление — 1.1;
- Пластик (двойное остекление) — 1;
- h — коэффициент высоты потолков;
- до 2.7 метров — 1;
- от 2.7 до 3.5 метров — 1.1;
- r — коэффициент размещения комнаты:
- не угловая — 1;
- угловая — 1.
Необходимое количество для обогрева комнаты (t) рассчитывается умножением площади комнаты на 100 Вт. То есть для обогрева комнаты 18 м2, необходимо тепла 18*100=1800 Вт или 1.8 кВт
Синонимы: радиатор, отопление, тепло, батарея, sections of the radiator, radiator.
Как бы вы ни утепляли дом или квартиру, без отопления обойтись просто невозможно. Часто в этих целях используют водяное отопление – это удобно, эффективно и долговечно. С помощью нашего калькулятора предлагаем вам всего за пару минут прикинуть требуемое количество секций радиаторов и определиться, какое решение наиболее отвечает вашим условиям.
Это нужно учитывать при установке отопительных приборов
- По ширине окна секции в сборе должны составлять не меньше 70%. Это значит, что лучше установить больше секций с меньшей тепловой мощностью.
- Расстояние от верхней части прибора до подоконника должно находиться в пределах 100-120 мм. В противном случае предсказать величину теплового потока будет гораздо сложнее.
- Чтобы не отапливать улицу, радиаторы должны отстоять от стены не менее чем на 50 мм.
- Между плоскостью пола и нижней точкой отопительного прибора должно выдерживаться расстояние от 100 мм.
Надеемся, что этот материал окажется полезным при проведении ремонтных работ или монтаже новой системы водяного отопления.
Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.
Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.
Расчет батарей отопления на площадь
Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.
Кратко о существующих типах радиаторов отопления
Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:
- Стальные радиаторы панельной или трубчатой конструкции.
- Чугунные батареи.
- Алюминиевые радиаторы нескольких модификаций.
- Биметаллические радиаторы.
Стальные радиаторы
Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.
Стальные радиаторы отопления имеют немало недостатков
Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.
В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.
Чугунные радиаторы
Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.
Знакомый всем с детских лет чугунный радиатор МС-140-500
Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.
Современные чугунные батареи отопления
В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.
При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:
- Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
- Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
- Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.
Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.
Алюминиевые радиаторы
Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.
При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы
Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).
Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.
Недостатки алюминиевых радиаторов:
- Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
- Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.
Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.
Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.
Биметаллические радиаторы отопления
Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.
Строение биметаллического радиатора отопления
Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.
Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.
Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.
Цены на популярные радиаторы отопления
Радиаторы отопления</h4>
Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.
Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.
Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:
- ТС – трубчатые стальные;
- Чг – чугунные;
- Ал – алюминиевые обычные;
- АА – алюминиевые анодированные;
- БМ – биметаллические.
Чг | ТС | Ал | АА | БМ | |
---|---|---|---|---|---|
Давление максимальное (атмосфер) | |||||
рабочее | 6-9 | 6-12 | 10-20 | 15-40 | 35 |
опрессовочное | 12-15 | 9 | 15-30 | 25-75 | 57 |
разрушения | 20-25 | 18-25 | 30-50 | 100 | 75 |
Ограничение по рН (водородному показателю) | 6,5-9 | 6,5-9 | 7-8 | 6,5-9 | 6,5-9 |
Подверженность коррозии под воздействием: | |||||
кислорода | нет | да | нет | нет | да |
блуждающих токов | нет | да | да | нет | да |
электролитических пар | нет | слабое | да | нет | слабое |
Мощность секции при h=500 мм; Dt=70 ° , Вт | 160 | 85 | 175-200 | 216,3 | до 200 |
Гарантия, лет | 10 | 1 | 3-10 | 30 | 3-10 |
Видео: рекомендации по выбору радиаторов отопления
Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая
Как рассчитать нужное количество секций радиатора отопления
Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.
Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.
Самые простые способы расчета
Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.
Q = S × 100
Q– требуемая теплоотдача от радиаторов отопления.
S– площадь обогреваемого помещения.
Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:
N =Q/ Qус
N– рассчитываемое количество секций.
Qус– удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.
Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.
Таблица секции
Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя изобъема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.
Q = S × h× 40 (34)
где h – высота потолка над уровнем пола.
Дальнейший расчет – ничем не отличается от представленного выше.
Подробный расчет с учетом особенностей помещения
А теперь перейдем к более серьезнымрасчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.
Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:
Q = S × 100 × А × В × С × D× Е × F× G× H× I× J
Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:
А – количество внешних стен в помещении.
Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:
- Две внешних стены – А = 1,2
- Три внешний стены – А = 1,3
- Все четыре стены внешние – А = 1,4
В – ориентация помещения по сторонам света.
Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».
Прогреваемость помещений во многом зависит от их расположения относительно сторон света
Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.
Отсюда – значения коэффициента В:
- Комната выходит на север или восток – В = 1,1
- Южная или западная комнаты – В = 1, то есть, может не учитываться.
С – коэффициент, учитывающий степень утепленностистен.
Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:
- Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом –
- Внешние стены не утеплены – С = 1,27
- Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.
D – особенности климатических условий региона.
Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.
- — 35 °С и ниже – D= 1,5
- — 25÷ — 35 °С –D= 1,3
- до – 20 °С –D= 1,1
- не ниже – 15 °С –D= 0,9
- не ниже – 10 °С –D= 0,7
Е – коэффициент высоты потолков помещения.
Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:
- До 2,7 м– Е = 1,
- 2,8 – 3,м– Е = 1,05
- 3,1 – 3,5 м –Е = 1,1
- 3,6 – 4,0 м –Е = 1,15
- Более 4,1 м – Е = 1,2
F– коэффициент, учитывающий тип помещения, расположенного выше
Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:
- утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
- отапливаемое помещение – F= 0,8
G– коэффициент учета типа установленных окон.
Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:
- обычные деревянные рамы с двойным остеклением – G= 1,27
- однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85
Н – коэффициент площади остекления помещения.
Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:
- Отношение менее 0,1 – Н = 0,8
- 0,11 ÷ 0,2 – Н = 0,9
- 0,21 ÷ 0,3 – Н = 1,
- 0,31÷ 0,4 – Н = 1,1
- 0,41 ÷ 0,5 – Н = 1,2
I– коэффициент, учитывающий схему подключения радиаторов.
От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:
Схемы врезки радиаторов в контур отопления
- а – диагональное подключение, подача сверху, обратка снизу –
- б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
- в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
- г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
- д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
- е – одностороннее нижнее подключение обратки и подачи – I = 1,28
J– коэффициент, учитывающий степень открытости установленных радиаторов.
Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:
На теплоотдачу батарей влияет место и способ их установки в помещении
а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9
в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07
г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12
д – радиатор полностью прикрыт декоративным кожухом– J= 1,2
⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰⃰
Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.
После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.
Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.
Калькулятор для точного расчета радиаторов отопления
Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.
Возможно, вас заинтересует информация о том, как выбрать электрокотел.
Похожие записиОтзывы и комментарии
Традиционными приборами теплообмена, устанавливаемыми в жилых помещениях, являются радиаторы отопления. Однако, нередко можно встретить картину, когда хозяева, по всей видимости – из соображений экономии, предпочитают обойтись самодельными регистрами, то есть каскадно сваренными отрезками труб большого диаметра. Такой подход обычно широко применяется в хозяйственных или подсобных постройках и помещениях, но при аккуратной сборе и покраске регистры вполне могут вписаться и в интерьер жилой комнаты.
Однако, экономия при таком подходе – далеко не очевидна: по сути, любой регистр по своим возможностям теплоотдачи обычно проигрывает намного более компактным и аккуратным внешне радиаторам. Во всяком случае, ждать каких-либо чудес от его установки – не приходится. А коли так, то планировать установку подобных отопительных приборов следует только после проведенных расчетов и сравнительного анализа стоимости и эффективности. А помогут нам в этом вопросе калькуляторы расчета параметров регистра отопления.
Предлагается такой алгоритм проведения вычислений:
- Вначале на первом калькуляторе определяется количество теплопотерь, требующих компенсации за счет системы отопления. Одним словом – вычисляется потребная тепловая мощность для конкретной комнаты.
- Располагая значением требуемой мощности, на втором калькуляторе можно быстро и точно «спроектировать» регистр отопления с искомой теплоотдачей – то есть определить его длину, количество секций и диаметр (сечение) используемых для изготовления труб.
Цены на медные трубы
медные трубы
Чуть ниже, под самими калькуляторами, будут приведены необходимые пояснения по проведению расчетов.
Калькуляторы расчета параметров регистра отопления
Калькулятор расчета необходимой тепловой мощности для обогрева помещения
Калькулятор для подбора оптимальных параметров регистра отопления
Пояснения по проведению расчетов
1. По расчету тепловой мощности
Алгоритм строится на учете тех специфических особенностей помещения, которые влияют на количество тепловых потерь из него:
- Площадь помещения и уровень высоты потолка предопределят примерный объем комнаты.
- Следующий пункт – количество стен, выходящих на улицу. Чем больше внешних стен, тем весомее теплопотери через них – в программу расчета будет внесена соответствующая поправка.
- Специфические данные – куда смотрят внешние стены по отношению к сторонам света и к преобладающим зимою ветрам. Кажется, что это мелочь, но для достоверности картины и ее учесть не мешает. Понятно, стена что на северной стороне, то есть никогда не видящая Солнца, или же почти всегда обращённая к морозному ветру, будет выхолаживаться значительно быстрее.
- Следующий пункт – это минимальные температуры, характерные для региона в самую холодную декаду года. Подчеркиваньем – НЕ аномальные морозы, а тот минимум, который является для ваших климатических условий нормой.
- Следующие поле ввода отражает степень термоизолированности помещения и предлагает оценить степень утепленность внешних стен. Полностью утепленной можно считать лишь ту, термоизоляционные работы на которой проведены в полном объеме на основании проведенных теплотехнических расчетов. Совсем не утепленных стен в жилых домах быть в принципе не должно – это может быть гараж, сарай и т.п., да и то хороший хозяин стремится и в таких постройках обеспечивать хотя бы минимальный уровень термоизоляции.
- Далее следует оценить «соседство» помещения по вертикали, то есть сверху и снизу. Утечки тепла через перекрытия и полы бывают весьма внушительными, так что игнорировать это обстоятельство – неразумно. Необходимо выбрать нужные пункты из выпадающих списков.
- Далее – окна. Потребуется внести их тип, количество и размеры. На основании этих данных программа расчета внесет необходимую поправку к конечному результату.
- И, наконец, в комнате может быть дверь, выходящая на улицу (в неотапливаемое помещение). Если дверью регулярно пользуются, то любое ее открытие сопровождается проникновением в комнату большой массы холодного воздуха, и это требует определенной «компенсации» за счет увеличения мощности обогрева.
Итоговый результат будет показан в ваттах и киловаттах. Значение записываем – и переходим к следующему калькулятору.
2. По подбору параметров регистра отопления
Да, именно по подбору, основываясь на проведённом расчете потребной тепловой мощности.
Дело в том, что в тех случаях, когда планируется изготовление и установка регистра отопления, хозяин уже, как правило, обладает какими-то исходными данными. Например, от точно знает, что в помещении можно выделить для установки регистра 4 метра по внешней стене — и не более, а вот с количеством параллельных секций особых ограничений нет. Другой пример – к самой идее изготовления регистра привело наличие в хозяйстве ненужных для других целей труб конкретного диаметра. Чтобы они зря не валялись, их пускают на изготовление прибора отопления.
Возможны иные исходные варианты – но всё равно калькулятор дает возможность очень быстро и точно «спроектировать» регистр.
Что указывается в полях ввода:
- Температурный режим системы отопления – средняя температура в трубе подачи и в «обратке». На основании этих параметров, с учетом температуры воздуха в помещении (она принята, для упрощения, стабильная, в +20°С), рассчитывается значение так называемого теплового напора, необходимого для дальнейших вычислений. Эти данные температуры при дальнейших расчетах можно будет не менять.
- А вот с размерными показателями регистра – вполне можно «поиграть». Имеется в виду, что можно попробовать изменять количество секций, длину регистра, диаметр или сечение труб, из которого прибор будет изготавливаться, так, чтобы итоговое значение при расчете было не меньше, чем полученное при работе с первым калькулятором.
Это – совсем не сложно, и на практике занимает буквально минуту-другую. Зато появляется возможность найти несколько приемлемых вариантов, например, из труб разного сечения – с разным количеством секций. Сравнив экономичность, степень сложности сборки, да и внешний вид этих вариантов, можно уже окончательно определиться с оптимальным для своих условий.
Регистры отопления – «за» и «против»
Не стоит слишком уж приписывать этим приборам «волшебные» качества по отоплению помещений. Скорее, наоборот, к их установке следует прибегать, когда имеются действительно веские основания. Подробнее об этом, а также о расчетах и изготовлении регистров отопления – в специальной публикации нашего портала.
Используемые источники:
- https://stroyday.ru/kalkulyatory/sistemy-otopleniya/kalkulyator-rascheta-kolichestva-sekcij-chugunnogo-radiatora-ms.html
- https://wpcalc.com/sections-of-the-radiator/
- https://cdelayremont.ru/kalkulyator-po-raschyotu-sekcij-radiatora
- https://otoplenie-expert.com/radiatory-otopleniya/raschet-batarej-otopleniya-na-ploshhad.html
- https://stroyday.ru/kalkulyatory/sistemy-otopleniya/kalkulyatory-rascheta-parametrov-registra-otopleniya.html
</ul></ul></ul></ul></ul></ul></ul>