Опубликовано 13 Окт 2013Рубрика: Теплотехника | 82 комментария
Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…
…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.
Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.
Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.
Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!
Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!
Количество теплоты при различных физических процессах.
Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.
Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.
1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.
2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.
3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3—Q2.
4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4—Q3.
5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5—Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)
Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.
Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.
Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.
Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.
Главные формулы теплопередачи.
Формулы очень просты.
Количество теплоты Q в Дж рассчитывается по формулам:
1. Со стороны потребления тепла, то есть со стороны нагрузки:
1.1. При нагревании (охлаждении):
Q=m*c*(Т2—Т1)
Здесь и далее:
m – масса вещества в кг
с – удельная теплоемкость вещества в Дж/(кг*К)
1.2. При плавлении (замерзании):
Q=m*λ
λ – удельная теплота плавления и кристаллизации вещества в Дж/кг
1.3. При кипении, испарении (конденсации):
Q=m*r
r – удельная теплота газообразования и конденсации вещества в Дж/кг
2. Со стороны производства тепла, то есть со стороны источника:
2.1. При сгорании топлива:
Q=m*q
q – удельная теплота сгорания топлива в Дж/кг
2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):
Q=t*I*U=t*R*I^2=(t/R)*U^2
t – время в с
I – действующее значение тока в А
U – действующее значение напряжения в В
R – сопротивление нагрузки в Ом
Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).
Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:
N=Q/t
Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.
Расчет в Excel прикладной задачи.
В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…
Условия задачи:
В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)
Расчет выполним в программе MS Excelили в программе OOo Calc.
С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».
Исходные данные:
1. Названия веществ пишем:
в ячейку D3: Сталь
в ячейку E3: Лед
в ячейку F3: Лед/вода
в ячейку G3: Вода
в ячейку G3: Воздух
2. Названия процессов заносим:
в ячейки D4, E4, G4, G4: нагрев
в ячейку F4: таяние
3. Удельную теплоемкость веществ cв Дж/(кг*К) пишем для стали, льда, воды и воздуха соответственно
в ячейку D5: 460
в ячейку E5: 2110
в ячейку G5: 4190
в ячейку H5: 1005
4. Удельную теплоту плавления льда λв Дж/кг вписываем
в ячейку F6: 330000
5. Массу веществ mв кг вписываем соответственно для стали и льда
в ячейку D7: 3000
в ячейку E7: 20
Так как при превращении льда в воду масса не изменяется, то
в ячейках F7 и G7: =E7=20
Массу воздуха находим произведением объема помещения на удельный вес
в ячейке H7: =24*15*7*1,23=3100
6. Время процессов tв мин пишем только один раз для стали
в ячейку D8: 60
Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно
в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7
в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0
в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4
Воздух также должен прогреться за это же самое отведенное время, читаем
в ячейке H8: =D8=60,0
7. Начальную температуру всех веществ T1в ˚C заносим
в ячейку D9: -37
в ячейку E9: -37
в ячейку H9: -37
8. Конечную температуру всех веществ T2в ˚C заносим
в ячейку D10: 18
в ячейку G10: 18
в ячейку H10: 18
Думаю, вопросов по п.7 и п.8 быть недолжно.
Результаты расчетов:
9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем
для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900
для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000=1561
для плавления льда в ячейке F12: =F7*F6/1000=6600
для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000=1508
для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000=171330
Общее количество необходимой для всех процессов тепловой энергии считываем
в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) =256900
В ячейках D14, E14, F14, G14, H14, и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).
10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается
для нагрева стали в ячейке D16: =D12/(D8*60)=21,083
для нагрева льда в ячейке E16: =E12/(E8*60)=2,686
для плавления льда в ячейке F16: =F12/(F8*60)=2,686
для нагрева воды в ячейке G16: =G12/(G8*60)=2,686
для нагрева воздуха в ячейке H16: =H12/(H8*60)=47,592
Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается
в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) =71,361
В ячейках D18, E18, F18, G18, H18, и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.
На этом расчет в Excel завершен.
Выводы:
Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.
При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).
Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.
Для получения информации о выходе новых статей и для скачивания рабочих файлов программпрошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.
После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей»НЕ ЗАБУДЬТЕ ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылкев письме, которое тут же придет к вам на указанную почту (иногда — в папку«Спам»)!
Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.
Жду вопросы и комментарии на статью!
ПрошуУВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).
Другие статьи автора блога
На главную
—>
Статьи с близкой тематикой
Отзывы
Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.
Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.
Вот этим и займемся сегодня.
Немного общей информации – что такое требуемое количество тепла?
Очень вкратце, все это и так известно – просто требуется небольшая систематизация.
Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.
Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.
Как определиться с ними их количественно?
Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².
Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?
Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.
Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.
И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.
Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.
Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.
Калькулятор расчета необходимой тепловой мощности для отопления помещений
Пояснения по проведению расчетов
Последовательно уносим данные в поля калькулятора.
- Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.
Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.
- Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
- Следующая группа данных учитывает особенности расположения помещения:
— Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).
— Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.
— Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.
— Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.
— Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.
- Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
- Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.
Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.
Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.
По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.
Советуем ознакомиться с более подробным материалом про подбор котла отопления для частного дома, а также с материалом, какой вид топлива самый экономичный для обогрева дома.
А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.
Правильно рассчитанная мощность системы отопления позволяет без усилий обогревать дом и обеспечивает функциональность всех элементов системы. Чтобы ее определить
, необходимо рассчитать мощность котла, учитывая при этом площадь дома и теплопотери, а также учесть характеристики и теплоотдачу остальных составляющих системы.
Производится расчет мощности ситемы отопления при подборе оборудования и материалов для монтажа системы. Наиболее важным является мощность котла. При ее недостатке, котел будет работать под постоянной нагрузкой, что повлияет на его ресурс работы и приведет к поломке определенных деталей. К тому же, для пуска и разогрева котла требуется больше горючего, чем для его работы при поддержании требуемой температуры, а значит расходы на его функционирование увеличатся. Если же мощность будет чрезмерной, нагрев теплоносителя будет производиться быстрее и топливо не будет дожигаться до конца, что особенно актуально для твердотопливного котла. В дымоходе, который не успеет за столь короткое время должным образом прогреться, будет образовываться и скапливаться конденсат, что может привести к его поломке.
Мощность котла отопления рассчитывается по нескольким параметрам, главным из которых считается отапливаемая площадь. Существует условный расчет, который определяет, что на каждые 10 м2 требуется 1кВт мощности. Но кроме этого, необходимо учитывать природно-климатические условия региона, для каждого из которых существуют специальные коэффициенты, рассчитанные исходя из наиболее низких температур в зимнее время. Они составляют от 0,6 до 2. Первый показатель применяется, когда расчет монтажа отопленияпроизводится для южных регионов, а последний – для северных.
Что влияет на потри тепла в доме
На потери тепла влияет множество факторов, к каждому из которых также разработаны коэффициенты:
- Высота потолков. Если потолки свыше 2,5 м, требуется производить расчет не по площади дома, а по кубатуре. На каждый 1 м3 потребуется 40 Вт тепловой мощности;
- Качество утепления. Если здание грамотно утеплено, коэффициент не применяется. В противном случае, действуют коэффициенты в зависимости от материала стен: из бетона и блоков – 1,25-1,5, из бревен и бруса – 1,25, из кирпича – 1,1-1,25, из пеноблоков – 1;
- Количество окон и дверей. На каждое окно необходимо прибавить к мощности котла по 100 Вт, наружных дверей – по 200 Вт;
- Качество стеклопакетов. Типовые с деревянной рамой – 0,2, пластиковые однокамерные – 0,1, двухкамерные — 0,07, энергосберегающие – 0,057;
- Расположение комнат. Расчет мощности котла лучше делать для каждой комнаты, при этом учитывать коэффициент 0,1-0,3 для внутренних помещений, 1 – для комнаты с одной наружной стеной, 1,15 – с двумя и 1,22 – с тремя;
Расчет мощности системы отопления — взять «про запас»
Итак, определив предварительную мощность по площади дома и применив все поправочные коэффициенты, получаем мощность котла, необходимую для отопления конкретного здания. Специалисты рекомендуют к конечному результату применить еще коэффициент 1,2, т.е. прибавить 20% «на запас». Он необходим для покрытия возможных теплопотерь, которые не были учтены в расчетах.
Расчет отопления зависит также от типа котла. Так, для двухконтурного к конечному результату применяется еще и коэффициент 1,5. Такой запас мощности необходим для обеспечения контура ГВС.
Немаловажно учитывать материал, из которого изготовлены радиаторы. Обладающие большей теплопроводностью стальные, алюминиевые или биметалические быстрее нагреваются и отдают тепло комнатам (мощность одной секции — 200 Вт). Чугунные радиаторы медленно нагреваются, но способны дольше аккумулировать тепло (мощность одной секции — 150 Вт). Количество секций определяется исходя из мощности котла или по площади дома и факторов, перечисленных выше. Для утепленного дома со стандартной высотой потолков потребуется 1 секция металлического радиатора на каждые 1,8-2 м2 или 1 секция чугунного на каждые 1,1-1,3 м2.
На расчет отопления также влияет материал, из которого смонтирована система отопления. Если для монтажа выбраны металлические трубы, стоит учесть, что они также нагреваются и отдают тепло в комнаты. Используя их, можно сократить количество секций радиаторов в помещениях. Пластиковый или пропиленовый трубопровод теплоотдачей обладает в минимальной степени, но чаще применяется благодаря современному дизайну и простоте монтажа.
Содержание статьи:
Для организации отопления в частном доме можно использовать системы, различающиеся между собой типом теплообменников. Наибольшей популярностью пользуются биметаллические радиаторы, которые объединят в себе свойства нескольких видов. При выборе радиаторов нужно изучить их технические характеристики, чтобы грамотно рассчитать мощность и количество секций, необходимых для обогрева помещения.
Теплоотдача и её использование
В биметаллических радиаторах теплоотдача 1 секции равняется 200 Вт или 850 калорий в пересчете на энергию
При изучении характеристик радиатора важно обращать внимание на теплоотдачу. Это понятие включает в себя количество тепла, которое выделяется радиатором за определенный период времени. Тепловой поток или мощность устройства измеряется в Ваттах. Для биметаллических радиаторов этот показатель равняется 200 Вт.
В технической документации часто теплоотдача обозначается в калориях за один час, которые с помощью формулы можно перевести в Ватты. 1 Ватт равняется 859,8 калорий в час.
В результате работы батареи происходят три процесса. Благодаря этому выделяется тепло. Обогрев помещения происходит благодаря:
- теплообмену;
- конвекции;
- излучению.
Для работы любой модели отопительных приборов характерно использование всех процессов. Отличие заключается только в пропорциях.
Размеры и емкость секций
Радиаторы можно покупать готовыми или собирать самостоятельно из отдельных секций
Популярность биметаллических радиаторов обусловлена их компактностью. Благодаря вставкам из стали они смотрятся аккуратнее, чем чугунные. Чем меньше одна секция по размеру, тем меньше для обогрева потребуется теплоносителя. Следовательно, использование такого вида батарей по расходам электроэнергии будет экономичнее. Но у очень узких труб есть свой минус. Они быстро засоряются мусором, который перемещается по тепловым сетям. Лучше выбирать модели биметаллических радиаторов с тонкими стенками, как у водопроводных труб.
На параметры емкости батареи влияет расстояние между осями. От емкости самого радиатора зависит теплоотдача. Например, этот параметр для батареи с межосевым расстоянием 20 см составляет от 0,1 до 0,16 л.
Главная особенность радиаторов из биметалла заключается в небольшом количестве теплоносителя. Но при этом мощности теплового потока будет достаточно, чтобы максимально эффективно обогревать помещения. Например, прибор из десяти секций 35 см сможет отопить комнату в 14 кв.м, но при этом он вмещает в себя всего 1,6 л.
Биметаллические батареи можно собрать самостоятельно по одной секции или приобрести уже готовый радиатор нужного размера.
Количество секций биметаллического радиатора
Со временем теплоотдача ухудшается из-за засорения труб и радиаторов внутри
Сколько киловатт в одной секции алюминиевого радиатора или биметаллической батареи, указано в техническом паспорте оборудования. Все расчеты нужно производить на основе указанных данных. Если в документах нет информации по характеристикам, ее можно найти на официальном сайте производителя. Иногда используется усредненное значение. Расчеты производятся отдельно для каждой комнаты.
Чтобы произвести правильные расчеты количества секций радиаторов из биметалла, нужно принимать во внимание несколько факторов. Важно, сколько квт в 1 секции радиатора из биметалла. Если планируется замена чугунных батарей на биметаллические радиаторы, нужно учитывать, что у биметалла уровень теплоотдачи выше, чем у чугуна. Поэтому размеры можно оставить такие же, какие были. Но при этом важно учитывать, что со временем качество прогрева будет ухудшаться из-за засорения труб. Отложения будут образовываться из-за взаимодействия воды с металлом.
Рекомендуется производить замену с таким же количеством секций или брать запас на одну-две секции, чтобы избежать потери уровня теплоотдачи из-за засорения труб. Если радиаторы приобретаются для нового помещения, обязательно нужно делать расчет для каждой комнаты.
Виды расчетов мощности одной секции
Усредненные значения мощности 1 секции радиаторов
Есть два способа расчета, благодаря которым можно определить мощность одной секции биметаллического радиатора.
Стандартный способ
Санитарно-техническими нормами определяется минимальный показатель теплоотдачи батарей для каждого региона отдельно. Для средней полосы России на один квадратный метр должно быть не менее 100 Вт. Расчет по стандартной схеме производится следующим образом:
- берется площадь помещения, в которое производится установка;
- полученный показатель умножается на 100 Вт;
- результат нужно поделить на теплоотдачу одной секции, эти данные можно найти в техническом паспорте отопительного оборудования.
У такого способа есть свои минусы. Его рекомендуется использовать только для комнат, в которых высота потолков не более трех метров. При расчете не берется во внимание материал стен, оконных конструкций и степень утепления.
Объемный способ
Формула расчета мощности радиатора для определенной площади помещения
Объемный способ позволяет получить точный расчет, который дает возможность более эффективно подобрать нужное количество секций. Расчет мощности производится в кубических метрах. По нормам СНИП берется значение в 41 Вт. Подсчет делается следующим образом:
- высчитывается площадь помещения;
- полученный показатель перемножается на высоту комнаты, таким образом получается объем;
- определяется нужная мощность для помещения – норма СНиП умножается на полученный объем;
- для расчета точного количества секций общая мощность делится на параметр по одной секции.
Полученный результат будет отличаться от расчета стандартным способом. Объемный метод считается наиболее точным.
Условия эксплуатации биметаллического радиатора
Каждые 2 – 3 года рекомендуется промывать систему отопления
Для более эффективного функционирования биметаллических батарей рекомендуется:
- Перед установкой радиаторов стену обить светоотражающей пленкой. Благодаря этому удастся снизить теплопотери.
- Отключение радиаторов производить в правильной последовательности. Сначала должна быть выключена подающая подводка, затем обратная. После этого спускают воду через запорный клапан.
- Включать отопительную систему, начиная с обратной подводки, затем спускается воздух и запускается подающая часть.
- Устанавливать фильтры, чтобы в радиатор не попадала грязь.
- Поверхность батарей перед началом отопительного сезона очищать теплой водой с моющими средствами. Нельзя использовать кислоты и щелочи, а также средства с абразивными частицами.
Радиатор всегда должен быть наполнен теплоносителем. Находиться без него батареи могут не более двух недель в году. Каждые два года секции нужно промывать внутри под большим напором воды.
Увеличение теплоотдачи без затрат
Таблица расчета мощности по типам радиаторов
Для каждого параметра отопительной системы используется свой показатель теплоотдачи. Значение прописывается в техническом паспорте. Одним из важных показателей, который необходимо учитывать при проведении расчетов, считается тепловой напор в системе.
Чаще всего параметр теплоотдачи для одной секции приводится при тепловом напоре в 60 градусов. Этот показатель соответствует температурному режиму воды в системе на уровне 90 градусов. Эти параметры характерны для старых домов. В современном строительстве используются новые технологии, которые не требуют высокого напора тепла. Это значение для отопительной системы будет равняться от 40 до 50 градусов.
Так как значения напора, прописанного в техническом паспорте и выдаваемого по факту, отличаются друг от друга, нужно пересчитывать мощность секций. Чаще всего показатель оказывается при пересчете ниже, чем заявленный. Показатель теплоотдачи умножается на фактическое значение напора тепла, затем полученную цифру делят на параметр, прописанный в документе.
Мощность секции биметаллического радиатора – важный показатель, который необходимо определить перед установкой системы отопления. От правильности произведенных расчетов зависит эффективность обогрева помещения.
“…- Сколько попугаев в тебе поместится, такой у тебя рост.– Очень надо! Я не стану глотать столько попугаев!…”
Из м/ф “38 попугаев”
В соответствии с международными правилами СИ (международная система единиц измерения) количество тепловой энергии или количество тепла измеряется в Джоулях [Дж], также существуют кратные единицы килоДжоуль [кДж] = 1000 Дж., МегаДжоуль [МДж] = 1 000 000 Дж, ГигаДжоуль [ГДж] = 1 000 000 000 Дж. и пр. Эта единица измерения тепловой энергии является основной международной единицей и наиболее часто используется при проведении научных и научно-технических расчётов.
Однако, все из нас знают или хотя бы раз слышали и другую единицу измерения количества теплоты (или просто тепла) это калория, а также килокалория, Мегакалория и Гигакалория, что означают приставки кило, Гига и Мега, смотреть пример с Джоулями выше. В нашей стране исторически сложилось так, что при расчёте тарифов за отопление, будь то отопление электроэнергией, газовыми или пеллетными котлами принято считать стоимость именно одной Гигакалории тепловой энергии.
Так что же такое Гигакалория, килоВатт, килоВатт*час или килоВатт/час и Джоули и как они связаны между собой?, вы узнаете в этой статье.
Итак, основная единица тепловой энергии это, как уже было сказано, Джоуль. Но прежде чем говорить об единицах измерения необходимо в принципе на бытовом уровне разъяснить что такое тепловая энергия и как и для чего её измерять.
Всем нам с детства известно, чтобы согреться (получить тепловую энергию) нужно что-то поджечь, поэтому все мы жгли костры, традиционное топливо для костра – это дрова. Таким образом, очевидно, при горении топлива (любого: дрова, уголь, пеллеты, природный газ, солярка) выделяется тепловая энергия (тепло). Но, чтобы нагреть, к примеру, различные объёмы воды требуется разное количество дров (или иного топлива). Ясно, что для нагрева двух литров воды достаточно нескольких пален в костре, а чтобы приготовить полведра супа на весь лагерь, нужно запастись несколькими вязанками дров. Чтобы не измерять такие строгие технические величины, как количество теплоты и теплота сгорания топлива вязанками дров и вёдрами с супом, теплотехники решили внести ясность и порядок и договорились выдумать единицу количества теплоты. Чтобы эта единица была везде одинаковая её определили так: для нагрева одного килограмма воды на один градус при нормальных условиях (атмосферном давлении) требуется 4 190 калорий, или 4,19 килокалории, следовательно, чтобы нагреть один грамм воды будет достаточно в тысячу раз меньше теплоты – 4,19 калории.
Калория связана с международной единицей тепловой энергии – Джоулем следующим соотношением:
1 калория = 4,19 Джоуля.
Таким образом, для нагрева 1 грамма воды на один градус потребуется 4,19 Джоуля тепловой энергии, а для нагрева одного килограмма воды 4 190 Джоулей тепла.
В технике, наряду с единицей измерения тепловой (и всякой другой) энергии существует единица мощности и, в соответствии с международной системой (СИ) это Ватт. Понятие мощности также применимо и к нагревательным приборам. Если нагревательный прибор способен отдать за 1 секунду 1 Джоуль тепловой энергии, то его мощность равна 1 Ватт. Мощность, это способность прибора производить (создавать) определённое количество энергии (в нашем случае тепловой энергии) в единицу времени. Вернёмся к нашему примеру с водой, чтобы нагреть один килограмм (или один литр, в случае с водой килограмм равен литру) воды на один градус Цельсия (или Кельвина, без разницы) нам потребуется мощность 1 килокалория или 4 190 Дж. тепловой энергии. Чтобы нагреть один килограмм воды за 1 секунду времени на 1 грдус нам нужен прибор следующей мощности:
4190 Дж./1 с. = 4 190 Вт. или 4,19 кВт.
Если мы хотим нагреть наш килограмм воды на 25 градусов за ту же секунду, то нам потребуется мощность в двадцать пять раз больше т.е.
4,19*25 =104,75 кВт.
Таким образом, можно сделать вывод, что пеллетный котёл мощностью 104,75 кВт. нагревает 1 литр воды на 25 градусов за одну секунду.
Раз мы добрались до Ватт и килоВатт, следует и о них словечко замолвить. Как уже было сказано Ватт – это единица мощности, в том числе и тепловой мощности котла, но ведь кроме пеллетных котлов и газовых котлов человечеству знакомы и электрокотлы, мощность которых измеряется, разумеется, в тех же килоВаттах и потребляют они не пеллеты и не газ, а электроэнергию, количество которой измеряется в килоВатт часах. Правильное написание единицы энергии килоВатт*час (именно, килоВатт умножить на час, а не разделить), запись кВт/час – является ошибкой!
В электрокотлах электрическая энергия преобразуется в тепловую (так называемое, Джоулево тепло), и , если котёл потребил 1 кВт*час электроэнергии, то сколько же он выработал тепла? Чтобы ответить на это простой вопрос, нужно выполнить простой расчёт.
Преобразуем килоВатты в килоДжоули/секунды (килоДжоуль в секунду), а часы в секунды: в одном часе 3 600 секунд, получим:
1 кВт*час =[ 1 кДж/с]*3600 c.=1 000 Дж *3600 с = 3 600 000 Джоулей или 3,6 МДж.
Итак,
1 кВт*час = 3,6 МДж.
В свою очередь, 3,6 МДж/4,19 = 0,859 Мкал = 859 ккал = 859 000 кал. Энергии (тепловой).
Теперь перейдём к Гигакалории, цену которой на различных видах топлива любят считать теплотехники.
1 Гкал = 1 000 000 000 кал.
1 000 000 000 кал. = 4,19*1 000 000 000 = 4 190 000 000 Дж.= 4 190 МДж. = 4,19 ГДж.
Или зная, что 1 кВт*час = 3,6 МДж пересчитаем 1 Гигакалорию на килоВатт*часы:
1 Гкал = 4190 МДж/3,6 МДж = 1 163 кВт*часов!
Если прочитав данную статью вы решили, проконсультироваться со специалистом нашей компании по любому вопросу, связанному с теплоснабжением, то вам Сюда!
Используемые источники:
- http://al-vo.ru/teplotekhnika/raschet-teplovoy-moshchnosti.html
- https://stroyday.ru/kalkulyatory/sistemy-otopleniya/skolko-tepla-kvt-vam-trebuetsya-dlya-obogreva-doma-proveryaem-na-kalkulyatore.html
- https://tehinstal.ru/otoplenie/moshchnost-sistemy-otopleniya.html
- https://strojdvor.ru/otoplenie/teplootdacha-bimetallicheskix-radiatorov-otopleniya-odnoj-sekcii/
- https://teplo-en.ru/articles/units/