Справочник строителя — это настоящая строительная энциклопедия, самый объемный раздел нашего строительного портала baurum.ru, содержащий специализированную информацию для профессиональных строителей и проектировщиков. Информация систематизирована, разбита по рубрикам, также доступен поиск интересующей строительной темы по ключевым словам. Благодарим за использование!
- Строительные материалы(1247 записей)
Общие сведения о строительных материалах | Арматура, металлопрокат | Бетоны | Строительные растворы | Добавки к бетонам и растворам | Цемент, вяжущие материалы | Битумные материалы | Природные материалы, заполнители | Лес, пиломатериалы | Кровельные материалы | Стеновые материалы | Керамические материалы | Гипсокартон, гипсоволокно | Теплоизоляционные материалы | Гидроизоляционные материалы | Акустические и огнезащитные материалы | Сухие строительные смеси | Клеи, герметики, монтажные пены | Лакокрасочные материалы | Материалы для устройства потолков | Материалы для устройства полов | Материалы для отделки стен | Керамическая плитка, керамогранит, камень | Стекло, стеклопакеты | Оконные конструкции | Дверные конструкции | Метизы, крепёж | Полимерные материалы | Элементы благоустройства | Мебель, интерьер
- Строительные работы(1049 записей)
Строительная деятельность | Подготовительные работы | Геодезические работы | Земляные работы | Устройство фундаментов | Каменные работы | Бетонные и железобетонные работы | Монтажные работы | Плотницкие работы | Кровельные работы | Теплоизоляционные работы | Гидроизоляционные работы | Отделочные работы | Стекольные работы | Благоустройство территории | Контроль качества производства СМР | Завершение строительства и условия приемки работ | Особенности работ в зимних условиях | Техника безопасности | Противопожарные мероприятия | Безопасность труда /СНиП 12-03-2001, СНиП 12-04-2002/ | СанПиН | Тематические статьи | Лестницы
- Строительная техника и оборудование(225 записей)
Краны | Машины для земляных работ | Машины для кровельных работ | Машины для малярных работ | Машины для производства бетонных работ | Машины для устройства полов | Машины для штукатурных работ | Оборудование для свайных работ | Подъемные механизмы | Погрузчики | Спецтранспорт | Сопутствующее оборудование | Строительная техника KOMATSU | Коммунальные машины
- Инженерные работы(379 записей)
Вентиляция | Водоснабжение | Канализация | Теплоснабжение | Электроснабжение | Бассейны | Искусственные водоёмы | Инженерные коммуникации
- Инженерное оборудование(128 записей)
Электротехническое оборудование | Трубы и фитинги | Системы безопасности | Санитарная техника | Геодезическое оборудование | Газовое оборудование
- Расход материалов(143 записей)
Разработка грунта | Гидроизоляция | Каменные конструкции | Устройство кровель | Отделочные работы | Стекольные работы
- Справочник-словарь(28 записей)
- Единицы измерения(18 записей)
- Алфавит и цифры(2 записей)
- Математика(5 записей)
- Проектировщику(231 записей)
Математика | Теоретическая механика | Материалы для строительных конструкций | Напряжения, деформации, прочность материалов | Строительное проектирование | Конструктивные решения зданий« Предыдущая1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|152|153|154|155|156|157|158|159|160|161|162|163|164|165|166|167|168|169|170|171|172|173|174|175|176|177|178|179|180|181|182|183|184|185|186|187|188|189|190|191|192|193|194|195|196|197|198|199|200…318Следующая »
Для климата средней полосы тепло в доме является насущной потребностью. Вопрос отопления в квартирах решается районными котельными, ТЭЦ или тепловыми станциями. А как же быть владельцу частного жилого помещения? Ответ один — установка отопительной техники, необходимой для комфортного проживания в доме, она же — автономная система отопления. Чтобы не получить в результате установки жизненно необходимой автономной станции груду металлолома, к проектированию и монтажу следует отнестись скрупулёзно и с большой ответственностью.
Расчет тепловых потерь
Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.
Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:
- площадь комнаты — 18 кв. м. (6 м х 3 м)
- 1 этаж
- потолок высотой 2,75 м,
- наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
- окно — 2 шт., 1,6 м х 1,1 м каждое
- пол — деревянный утепленный, снизу — подпол.
Расчеты площадей поверхностей:
- наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
- окон: S2 = 2×1,1×1,6=3,52 кв. м.
- пола: S3 = 6×3=18 кв. м.
- потолка: S4 = 6×3= 18 кв. м.
Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:
- Q1 = S1 х 62 = 20,78×62 = 1289 Вт
- Q2= S2 x 135 = 3×135 = 405 Вт
- Q3=S3 x 35 = 18×35 = 630 Вт
- Q4 = S4 x 27 = 18×27 = 486 Вт
- Q5=Q+ Q2+Q3+Q4=2810 Bт
Итого: суммарные теплопотери комнаты в самые холодные дни равны 2,81 кВт. Это число записывается со знаком минус и теперь известно сколько тепла необходимо подать в комнату для комфортной температуры в ней.
Расчет гидравлики
Переходим к наиболее сложному и важному гидравлическому расчету — гарантии эффективной и надежной работы ОС.
Единицами расчета гидравлической системы являются:
- диаметр трубопровода на участках отопительной системы;
- величины давлений сети в разных точках;
- потери давления теплоносителя;
- гидравлическая увязка всех точек системы.
Перед расчетом нужно предварительно выбрать конфигурацию системы, тип трубопровода и регулирующей/запорной арматуры. Затем определиться с видом приборов отопления и их расположением в доме. Составить чертеж индивидуальной системы отопления с указанием номеров, длины расчетных участков и тепловых нагрузок. В заключении выявить основное кольцо циркуляции, включающее поочередные отрезки трубопровода, направленные к стояку (при однотрубной системе) или к самому уделенному прибору отопления (при двухтрубной системе) и обратно к источнику тепла.
При любом режиме эксплуатации СО необходимо обеспечить бесшумность работы. В случае отсутствия неподвижных опор и компенсаторов на магистралях и стояках возникает механический шум из-за температурного удлинения. Использование медных или стальных труб способствует распространению шума по всей системе отопления.
Из-за значительной турбулизации потока, который возникает при увеличенном движении теплоносителя в трубопроводе и усиленном дросселировании потока воды регулирующим клапаном, возникает гидравлический шум. Поэтому, учитывая возможность возникновения шума, необходимо на всех этапах гидравлического расчета и конструирования — подбор насосов и теплообменников, балансовых и регулирующих клапанов, анализ температурных удлинений трубопровода — выбирать соответствующие для заданных исходных условий оптимальное оборудование и арматуру.
Изготовить отопление в частном доме возможно и самостоятельно. Возможные варианты представлены в данной статье: https://teplo.guru/sistemy/varianty-otopleniya-doma-svoimi-rukami.html
Перепады давления в СО
Гидравлический расчет включает имеющиеся перепады давления на вводе отопительной системы:
- диаметры участков СО
- регулирующие клапаны, которые устанавливаются на ветках, стояках и подводках приборов отопления;
- разделительные, перепускные и смесительные клапаны;
- балансовые клапаны и величины их гидравлической настройки.
При пуске отопительной системы балансовые клапаны настраиваются на схемные параметры настройки.
На схеме отопления обозначается расчетная тепловая нагрузка каждого из отопительных приборов, которая равна тепловой расчетной нагрузке помещения, Q4. В случае наличия более одного прибора необходимо разделить величину нагрузки между ними.
Далее необходимо определить основное циркуляционное кольцо. В однотрубной системе количество колец равно числу стояков, а в двухтрубной — количеству приборов отопления. Клапаны баланса предусматривают для каждого кольца циркуляции, поэтому количество клапанов в однотрубной системе равно числу вертикальных стояков, а в двухтрубной — количеству приборов отопления. В двухтрубной СО балансовые вентили располагают на обратной подводке прибора отопления.
Санитарные нормы и правила, касающиеся отопления в частном доме, представлены здесь: https://teplo.guru/normy/snipy-po-otopleniyu.html
Расчет циркуляционного кольца включает:
- систему с попутным движением воды. В однотрубных системах кольцо располагается в самом нагруженном стояке, в двухтрубных — в нижнем приборе отопления более нагруженного стояка;
- систему с тупиковым движением теплоносителя. В однотрубных системах кольцо располагается в самом нагруженном и удаленном стояке, в двухтрубных — в нижнем приборе отопления нагруженного удаленного стояка;
- горизонтальную систему, где кольцо располагается в более нагруженной ветви 1-го этажа.
Необходимо из двух направлений расчета гидравлики основного кольца циркуляции выбрать одно.
При первом направлении расчета, диаметр трубопровода и потери давления в кольце циркуляции определяются по задаваемой скорости движения воды на каждом участке основного кольца с последующим подбором насоса циркуляции. Напор насоса Pн, Па определяется в зависимости от вида отопительной системы:
- для вертикальных бифилярных и однотрубных систем: Рн = Pс. о. — Ре
- для горизонтальных бифилярных и однотрубных, двухтрубных систем:Рн = Pс. о. — 0,4Ре
где:
- Pс.о — потери давления в основном кольце циркуляции, Па;
- Ре — естественное циркуляционное давление, которое возникает вследствие понижения температуры теплоносителя в трубах кольца и приборах отопления, Па.
В горизонтальных трубах скорость теплоносителя принимают от 0,25 м/с, для возможности удаления воздуха из них. Оптимальная расчетная движения теплоносителя в трубах из стали до 0,5 м/с, полимерных и медных — до 0,7 м/с.
После расчета основного кольца циркуляции производят расчет остальных колец путем определения известного давления в них и подбора диаметров по примерной величине удельных потерь Rср.
Применяется направление в системах с местным теплогенератором, в СО при зависимом (при недостаточном давлении на вводе тепловой системы) или независимом присоединении к тепловым СО.
Второе направление расчета заключается в подборе диаметра трубы на расчетных участках и определении потерь давления в кольце циркуляции. Рассчитывается по изначально заданной величине циркуляционного давления. Диаметры участков трубопровода подбирают по примерной величине удельных потерь давления Rср. Этот принцип применяется в расчетах отопительных систем с зависимым присоединением к тепловым сетям, с естественной циркуляцией.
Для исходного параметра расчета нужно определить величину имеющегося циркуляционного перепада давления PP, где PP в системе с естественной циркуляцией равно Pe, а в насосных системах — от вида отопительной системы:
- в вертикальных однотрубных и бифилярных системах: PР = Рн + Ре
- в горизонтальных однотрубных, двухтрубных и бифилярных системах: PР = Рн + 0,4.Ре
Проекты систем отопления, реализуемых в своих домах, представлены в данном материале: https://teplo.guru/sistemy/proekty-otopleniya-chastnyh-domov.html
Расчет трубопроводов СО
Следующей задачей расчета гидравлики является определение диаметра трубопровода. Расчет производится с учетом циркуляционного давления, установленном для данной СО, и тепловой нагрузки. Следует отметить, что в двухтрубных СО с водяным теплоносителем главное циркуляционное кольцо располагается в нижнем приборе отопления, более нагруженного и удаленного от центра стояка.
По формуле Rср = β*?рр/∑L; Па/м определяем среднее значение на 1 метр трубы удельной потери давления от трения Rср, Па/м, где:
- β — коэффициент, учитывающий часть потери давления на местные сопротивления от общей суммы расчётного циркуляционного давления (для СО с искусственной циркуляцией β=0,65);
- рр — имеющееся давление в принятой СО, Па;
- ∑L — сумма всей длины расчётного кольца циркуляции, м.
Расчет количества радиаторов при водяном отоплении
Формула расчета
В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.
Например: один кубометр кирпичного дома с качественными стеклопакетами потребует 0,034 кВт; из панели — 0,041 кВт; возведенные согласно всех современных требований — 0,020 кВт.
Расчет производим следующим образом:
- определяем тип помещения и выбираем вид радиаторов;
- умножаем площадь дома на указанный тепловой поток;
- делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.
Например: комната 6x4x2,5 м панельного дома (тепловой поток дома 0,041 кВт), объем комнаты V = 6x4x2,5 = 60 куб. м. оптимальный объем теплоэнергии Q = 60×0, 041 = 2,46 кВт3, количество секций N = 2,46 / 0,16 = 15,375 = 16 секций.
Характеристики радиаторов
Тип радиатора
Тип радиатора | Мощность секции | Коррозийное воздействие кислорода | Ограничения по Ph | Коррозийное воздействие блуждающих токов | Давление рабочее/ испытательное | Гарантийный срок службы (лет) |
Чугунный | 110 | — | 6.5 — 9.0 | — | 6−9 /12−15 | 10 |
Алюминиевый | 175−199 | — | 7— 8 | + | 10−20 / 15−30 | 3−10 |
85 | + | 6.5 — 9.0 | + | 6−12 / 9−18.27 | 1 | |
Биметаллический | 199 | + | 6.5 — 9.0 | + | 35 / 57 | 3−10 |
Правильно проведя расчет и монтаж из высококачественных комплектующих, вы обеспечите ваш дом надежной, эффективной и долговечной индивидуальной системой отопления.
Наверное, нет смысла подвергать сомнению утверждение, что автономный обогрев собственного жилища имеет ряд преимуществ перед централизованными системами отопления. Единственным недостатком можно считать достаточно большие первоначальные вложения, львиную долю которых составляет проведение гидравлического расчета однотрубной системы отопления. В этой публикации будет рассказано, как самостоятельно рассчитать однотрубную отопительную систему (СО) для небольшого помещения или частного дома.
Содержание статьи:
Сбор данных и подготовительные расчеты
Прежде всего ответим, для чего нужен гидравлический расчет?
- Для эффективного обогрева всех помещений независимо от внешней и внутренней температуры воздуха.
- Для снижения эксплуатационных затрат, которые возникают в процессе работы отопительного оборудования.
- Для снижения затрат, связанных с приобретением оборудования и материалов. Это касается грамотного подбора диаметров трубопровода на каждом участке отопительной системы.
- Для снижения уровня шума, связанного с движением теплоносителя по контуру.
- Для стабильной работы отопительной системы.
Для того чтобы сделать расчет системы отопления (в этом повествовании будет говориться исключительно об однотрубной схеме с принудительной циркуляцией теплоносителя), необходимо получить следующие данные:
- Необходимую мощность теплогенератора.
- Мощность и количество радиаторов для каждого отапливаемого помещения.
- Диаметр и протяженность отопительного контура.
Имея на руках искомые данные можно переходить к подбору циркуляционного насоса, расчетам количества теплоносителя, емкости расширительного бака и настройки группы безопасности. Теперь обо всем по порядку.
Расчет тепловой производительности котельной установки
Итак, вы решили создавать однотрубную систему отопления частного дома своими руками. Первое, что нужно сделать, чтобы узнать искомую величину мощности теплогенератора – это произвести расчет теплопотерь каждого отапливаемого помещения. Как известно, основные потери тепла исходят от:
- Наружных стен.
- Потолка.
- Пола.
- Окон.
На примере рассмотрим теплопотери угловой комнаты, с размерами 6 х 3 метра, двумя окнами 1,5 х 1,2 м, и высотой потолков 2,5 м.
- Наружные стены (S1) = (6 х 2,5)+(3 х 2,5)-2 (1,5 х 1,2); S1= 15+7,5-3,6=18,9 м2
- Окна (S2) = 2(1,5 х 1,2)= 3,6 м2
- Пол (S3) = 18 м2
- Потолок (S4) =18 м2
Применяем формулу расчета теплопотерь (Q) = k; для наружных стен k = 62; для окон k = 135; для пола k = 35; для потолка k = 27. Подставляем необходимые значения.
- Q1 = 18,9 х 62 = 1171,8 Вт или 1,172 кВт;
- Q2 = 3,6 х 135 = 486 Вт или 0,486 кВт;
- Q3 = 18 х 35 = 630 Вт или 0,63 кВт
- Q4 = 18 х 27 = 486 Вт или 0,486 кВт;
Теперь суммируем все теплопотери для выявления необходимого количества тепла, которого необходимо для конкретного помещения = 2,774 кВт;
Те же действия необходимы для каждого отдельного помещения. Суммируя теплопотери можно сделать вывод о необходимой производительности котельной установки. Есть методика менее точная, но достаточно надежная и быстрая: необходимо использовать удельную мощность котлоагрегата рекомендованную в зависимости от региона.
Тепловую производительность котельной установки можно высчитать, используя Wк = Wуд х S/10; где:
Wк = мощность котлоагрегата;
Wуд = рекомендованная удельная мощность, представленная на рис.;
S/10 = площадь обогреваемого помещения на 10 м3.
Теперь, когда, есть данные о мощности котлоагрегата, необходимого для обогрева дома, можно приступать к чертежам контура отопительной системы, прикидывать место размещения радиаторов отопления.
Расчет количества и мощности батарей
Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.
Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.
Для примера, рассмотрим подбор батарей для комнаты 18 м2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).
- Узнаем объем помещения: 18 х 2,5 = 45 м3.
- Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт
Теперь нужно воспользоваться таблицей, с характеристиками батарей.
На рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.
- Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74
Итог: для обогрева помещения 45 м3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.
Вычисления диаметра трубы для отопительного контура
Данная процедура является обязательной при расчете любой системы отопления. В однотрубных схемах – это еще и достаточно сложно сделать, так как теплоноситель все больше остывает в каждом последующем радиаторе. Для поддержания определенной температуры нужно на каждом последующем участке контура увеличивать скорость движения теплоносителя. Сделать это можно, уменьшая диаметр трубы, согласно необходимой тепловой мощности для каждого радиатора.
Сделать вычисления можно по формуле Rср = β*?рр/∑L; Па/м, Получим среднее значение потери давления вследствие трения на 1 метр расчетного кольца СО. Далее, используя формулу, рассчитываем диаметр трубопровода для конкретного участка контура.
Несколько слов о скорости движения воды в системе. Чтобы отопление работало эффективно необходимо чтобы скорость движения теплоносителя была как можно выше. Однако, при этом увеличивается давление в системе и возникает шум от трения о поверхность трубопровода. Оптимальная скорость теплоносителя в горизонтальной однотрубной системе отопления должна находиться в пределах 0,3 – 0,7 м/сек. Медленнее – возможно завоздушивание; Быстрее – появляется шум.
Существуют таблицы, в которых можно выбрать необходимый диаметр труб. Для этого диаметра предлагается оптимальная скорость и расход теплоносителя. Рассмотрим пример подбора труб из армированного полипропилена для каждого участка отопительного контура с 6-ю радиаторами разной мощности.
Важно! В таблице указан внутренний диаметр трубы. Оптимальные результаты находятся в колонках, обозначенных синим цветом.
- На первом участке СО (от выхода котла до радиатора) мощность системы 15 кВт. Выбираем данные, соответствующие мощности из синих колонок. Подходит труба с внутренним диаметром 20 мм и 25 мм. Выбираем 20 мм (она дешевле). Скорость движения теплоносителя на этом участке будет 0,6 м/с; расход теплоносителя, через трубу такого диаметра при данной скорости – 659 кг/ч.
- Первый радиатор имеет мощность 3 кВт поэтому нагрузка на нем уже 15 – 3 = 12 кВт. В оптимальной зоне таблицы данное значение находится в зоне трубы 20 мм.
- На участке между первым и вторым радиатором: 12 кВт – 2,5 = 9,5 кВт; диаметр трубы 20 мм.
- На третьем радиаторе тепловая нагрузка падает уже до 9,5 – 2 = 7,5 кВт. Исходя из таблицы на этом участке требуется труба с 15 мм внутреннего диаметра.
Аналогично делается расчет трубопровода на всех участках СО.
Совет: Следует знать, что армированный полипропилен имеет несколько другие внутренние размеры, чем указано в таблице. Показанный нами пример внутреннего диаметра 20 мм реально имеет 21,2 мм. и маркировку ПП32, и соответственно внешний диаметр 32 мм.
Расчет объема расширительного бака
Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.
Количество воды в СО рассчитывается по формуле: W = π (D2/4) L где:
- π – 3,14;
- D – внутренний диаметр участка трубопровода;
- L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).
Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,0212/4) х 100 = 0.0345м3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.
Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.
>>> Все про аренду авто на Кипре <<<
Однотрубная система отопления – одно из решений по разводке труб внутри зданий с подключением приборов нагрева. Такая схема видится наиболее простой и эффективной. Сооружение отопительной ветки по варианту «одной трубой» обходится домовладельцам дешевле иных способов.
Чтобы обеспечить работоспособность схемы, необходимо выполнить предварительный расчет однотрубной системы отопления – это позволит поддерживать нужную температуру в доме и предупредить потерю давления в сети. С этой задачей вполне реально справиться самостоятельно. Сомневаетесь в своих силах?
Мы расскажем вам, каковы особенности устройства однотрубной системы, приведем примеры рабочих схем, объясним, какие расчеты обязательно следует выполнить на этапе планирования отопительного контура.
Устройство однотрубной схемы отопления
Гидравлическая устойчивость системы традиционно обеспечивается оптимальным подбором условного прохода трубопроводов (Dусл). Стабильную схему реализовать способом подбора диаметров, без предварительной настройки систем отопления с терморегуляторами, достаточно просто.
Именно к таким отопительным системам прямое отношение имеет однотрубная схема с вертикальным/горизонтальным монтажом радиаторов и при полном отсутствии запорно-регулирующей арматуры на стояках (ответвлениях к приборам).
Наглядный пример установки радиаторного элемента в схеме, организованной по принципу циркуляции одной трубой. В данном случае используются металлопластиковые трубопроводы с металлическими фитингами
Методом изменения диаметров труб в однотрубной кольцевой схеме отопления можно достаточно точно сбалансировать имеющие место потери давления. Управление же потоками теплоносителя внутри каждого отдельного нагревательного прибора обеспечивает установка терморегулятора.
Обычно в рамках процесса конструирования отопительной системы по однотрубной схеме на первом этапе выстраиваются узлы обвязки радиаторов. На втором этапе выполняют увязку циркуляционных колец.
Классическое схемное решение, где для протока теплоносителя и распределения воды по тепловым радиаторам используется одна труба. Эта схема относится к наиболее простым вариантам (+)
Конструирование узла обвязки отдельно взятого прибора предполагает определение потерь давления на узле. Выполняется расчёт с учётом равномерного распределения потока теплоносителя терморегулятором относительно точек подключения на этом схемном участке.
В рамках той же операции выполняется расчёт коэффициента затекания, плюс определение диапазона параметров распределения потоков на замыкающем участке. Уже опираясь на рассчитанный диапазон веток, выстраивают циркуляционное кольцо.
Увязывание циркуляционных колец
Чтобы качественно выполнить увязку циркуляционных колец однотрубной схемы, предварительно выполняется расчёт по возможным потерям давления (∆Ро). При этом не учитывают потери давления на регулировочном вентиле (∆Рк).
Далее по значению расхода теплоносителя на конечном участке циркуляционного кольца и по значению ∆Рк (график в технической документации на прибор), определяется величина настройки регулировочного вентиля.
Этот же показатель можно определить по формуле:
Кв=0,316G / √∆Рк,
где:
- Кв – величина настройки;
- G – расход теплоносителя;
- ∆Рк – потери давления на регулировочном вентиле.
Аналогичные расчёты выполняются для каждого отдельного регулирующего вентиля однотрубной системы.
Правда, диапазон потерь давления на каждом РВ вычисляют по формуле:
∆Рко=∆Ро + ∆Рк – ∆Рn,
где:
- ∆Ро – возможные потери давления;
- ∆Рк – потери давления на РВ;
- ∆Рn – потери давления на участке n-циркуляционного кольца (без учёта потерь в РВ).
Если в результате расчётов необходимые значения для однотрубной системы отопления в целом не были получены, рекомендуется применить вариант однотрубной системы, куда входят автоматические регуляторы расхода.
Автоматический регулятор расхода, установленный на линии обратного хода теплоносителя. Прибор регулирует общий расход теплоносителя для всей однотрубной схемы
Такие устройства, как автоматические регуляторы, монтируются на концевых участках схемы (узлы соединений на стояках, отводящие ветки) в точках подключения к возвратной линии.
Если технически изменить конфигурацию автоматического регулятора (поменять местами кран слива и пробку), установка приборов возможна и на линиях подачи теплоносителя.
С помощью автоматических регуляторов расхода осуществляется увязывание циркуляционных колец. При этом определяются потери давления ∆Рс на концевых участках (стояки, приборные ветки).
Остаточные потери давления в границах циркуляционного кольца распределяют между общими участками трубопроводов (∆Рмр) и общим регулятором расхода (∆Рр).
Значение временной настройки общего регулятора выбирается по представленным в технической документации графикам, с учётом ∆Рмр концевых участков.
Рассчитывают потери давления на концевых участках формулой:
∆Рс=∆Рпп – ∆Рмр – ∆Рр,
где:
- ∆Рр – расчётное значение;
- ∆Рпп – заданный перепад давлений;
- ∆Рмр – потери Рраб на участках трубопроводов;
- ∆Рр – потери Рраб на общем РВ.
Настройку автоматического регулятора основного циркуляционного кольца (при условии изначально не заданного перепада давлений) осуществляют с учётом установки минимально возможного значения из диапазона настройки в технической документации прибора.
Качество управляемости потоков автоматикой общего регулятора контролируют по разности потерь давления на каждом отдельном регуляторе стояка или приборной ветки.
Применение и экономическое обоснование
Отсутствие требований к температуре охлаждённого теплоносителя является отправной точкой для проектирования однотрубных отопительных систем на терморегуляторах с установкой ТР на подводящих линиях радиаторов. При этом обязательным является оснащение теплового пункта автоматической регулировкой.
Терморегулятор, установленный на линии, подающей теплоноситель в радиатор отопления. Для монтажа использовались металлические фитинги, которые удобны для работы с трубами из полипропилена
Схемные решения, где отсутствуют терморегулирующие приборы на подводящих линиях радиаторов, также используются на практике. Но применение подобных схем обусловлено несколько иными приоритетами обеспечения микроклимата.
Обычно однотрубные схемы, где отсутствует автоматическое регулирование, применяют для групп помещений, спроектированных с учётом компенсации тепловых потерь (50% и более) за счёт дополнительных устройств: приточная вентиляция, кондиционирование, электрический подогрев.
Также устройство однотрубных систем встречается в проектах, где нормативами допускается температура теплоносителя, превышающая граничное значение рабочего диапазона терморегулятора.
Проекты многоквартирных домов, где эксплуатация системы отопления завязана с учётом потребляемого тепла посредством счётчиков, обычно выстраивается по периметральной однотрубной схеме.
Периметральная однотрубная схема – своего рода «классика жанра», которую часто применяют в практике муниципального и частного домостроения. Считается простой и экономичной для разных условий (+)
Экономическому обоснованию для реализации такой схемы подлежит расположение магистральных стояков в разных точках конструкции.
Основными критериями расчёта служит стоимость двух главных материалов: труб отопления и фитингов.
Согласно практическим примерам реализации периметральной однотрубной системы, увеличение Dу проходного сечения трубопроводов в два раза сопровождается увеличением расходов на закупку труб в 2-3 раза. А расходы по фитингам возрастают до 10-ти кратного размера в зависимости от того, из какого материала изготовлены фитинги.
Расчетная база для монтажа
Монтаж однотрубной схемы, с точки зрения расположения рабочих элементов, практически не отличается от устройства тех же двухтрубных систем. Магистральные стояки, как правило, размещаются за пределами жилых помещений.
Правилами СНиП рекомендуется вести прокладку стояков внутри специальных шахт или желобов. Квартирная ветка традиционно выстраивается по периметру.
Пример размещения трубопроводов системы отопления в специально пробитых штрабах. Этот вариант устройства часто применяется в современном строительстве
Прокладка трубопроводов осуществляется на высоте 70-100 мм от верхней границы напольного плинтуса. Или монтаж делают под декоративным плинтусом высотой 100 мм и более, шириной до 40 мм. Современным производством выпускаются такие специализированные накладки под монтаж сантехнических или электрических коммуникаций.
Обвязка радиаторов выполняется схемой «сверху-вниз» с подводом труб на одной стороне или по обеим сторонам. Расположение терморегуляторов «по конкретной стороне» не критичное, но если монтаж прибора отопления выполняется рядом с балконной дверью, установку ТР выполняют обязательно на дальней от двери стороне.
Прокладка труб за плинтусом видится преимущественной с декоративной точки зрения, но заставляет вспомнить о недостатках, когда дело касается прохождения участков, где есть внутрикомнатные дверные проёмы.
Трубопроводы, уложенные под декоративным плинтусом. Можно сказать, классическое решение для однотрубных систем, внедряемых в новостройках разного класса
Соединение отопительных приборов (радиаторов) с однотрубными стояками выполняется по схемам, допускающим незначительное линейное удлинение труб или по схемам с компенсацией удлинения труб в результате температурных перепадов.
Третий вариант схемных решений, где предполагается использование трёхходового регулятора,не рекомендуется по соображениям экономии.
Если устройство системы предусматривает прокладку стояков, скрытых в штробах стен, рекомендуется использовать в качестве присоединительной арматуры угловые терморегуляторы типа RTD-G и запорные вентили подобные приборам из серии RLV.
Варианты подключения: 1,2 – для систем, допускающих линейное расширение труб; 3,4 – для систем, рассчитанных под использование дополнительных источников тепла; 5,6 – решения на трёхходовых клапанах считаются невыгодными (+)
Диаметр трубного ответвления к приборам отопления рассчитывается по формуле:
D >= 0.7√V,
где:
- 0,7 – коэффициент;
- V – внутренний объём радиатора.
Ответвление выполняется с некоторым уклоном (не менее 5%) в направлении свободного выхода теплоносителя.
Выбор основного циркуляционного кольца
Если проектное решение предполагает устройство системы отопления на основе нескольких циркуляционных колец, необходим выбор основного циркуляционного кольца. Выбор теоретически (и практически) должен выполняться по максимальному значению теплопередачи наиболее удалённого радиатора.
Этот параметр в какой-то степени влияет на оценку гидравлической нагрузки в целом, приходящейся на циркуляционное кольцо.
Циркуляционное кольцо в образе структурной схемы. Для разных вариантов проектирования таких колец может быть несколько. При этом только одно кольцо является основным (+)
Рассчитывается теплопередача отдалённого прибора формулой:
Атп = Qв / Qоп + ΣQоп,
где:
- Атп – расчётная теплопередача удалённого прибора;
- Qв – необходимая теплопередача удалённого прибора;
- Qоп – теплопередача от радиаторов в помещение;
- ΣQоп – сумма необходимой теплопередачи всех приборов системы.
При этом параметр суммы необходимой теплопередачи может состоять из суммы значений приборов, призванных обслуживать здание в целом или только часть здания. Например, при расчёте тепла отдельно для помещений, охватываемых одним отдельным стояком или отдельно взятых площадей, обслуживаемых приборной веткой.
А вообще расчётная теплопередача любого иного отопительного радиатора, установленного в системе, рассчитывается немного другой формулой:
Атп = Qоп / Qпом,
где:
- Qоп – необходимая тепловая передача для отдельного радиатора;
- Qпом – тепловая потребность для конкретного помещения, где используется однотрубная схема.
Проще всего разобраться с расчетами и применение полученных значений можно на конкретном примере.
Практический пример расчёта
Для жилого дома требуется однотрубная система с управлением от терморегулятора.
Значение номинальной пропускной способности прибора на максимальной границе настройки составляет 0,6 м3/ч/бар (к1). Максимально возможная характеристика пропускной способности для этого значения настройки – 0,9 м3/ч/бар (к2).
Максимально возможный перепад давления ТР (при уровне шума 30дБ) – не более 27 кПа (ΔР1). Напор насоса 25 кПа (ΔР2) Рабочее давление для системы отопления – 20 кПа(ΔР).
Нужно определить диапазон потерь давления для ТР (ΔР1).
Значение внутренней теплопередачи рассчитывают так: Атр = 1 – к1/к2 (1 – 06/09) = 0,56. Отсюда вычисляется требуемый диапазон потерь давления на ТР: ΔР1 = ΔР * Атр (20 * 0,56…1) = 11,2…20 кПа.
Если самостоятельные расчеты приводят к неожиданным результатам, лучше обратиться к специалистам или для проверки воспользоваться компьютерным калькулятором.
Выводы и полезное видео по теме
Подробный разбор расчетов с помощью компьютерной программы с пояснениями по монтажу и улучшению функциональности системы:
Следует отметить, что полномасштабный расчёт даже самых простых решений сопровождается массой вычисляемых параметров. Конечно же, вычислять всё без исключения справедливо при условии организации конструкции отопления, близкой к идеальной структуре. Однако в реальности ничего идеального нет.
Поэтому зачастую полагаются на расчёты как таковые, а также на практические примеры и на результаты работы этих примеров. Особо популярен такой подход для частного домостроения.
Есть, что дополнить, или возникли вопросы по расчету однотрубной системы отопления? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом обустройства отопительного контура. Форма для связи находится в нижнем блоке.
Используемые источники:
- https://www.baurum.ru/_library/
- https://teplo.guru/sistemy/raschet-otopleniya-chastnogo-doma.html
- http://ventilationpro.ru/sistemy-otopleniya/samostoyatelnyjj-raschet-i-montazh/raschet-odnotrubnojj-sistemy-otopleniya-s-primerami.html
- https://sovet-ingenera.com/otoplenie/project/raschet-odnotrubnoj-sistemy-otopleniya.html