Содержание статьи
Как известно, стальные трубы обладают высокой теплоотдачей, в некоторых случаях это дает положительный результат, но достаточно часто является и причиной возникновения многих трудностей. Поэтому, монтируя различные системы, приходится сталкиваться с необходимостью выполнить расчет теплоотдачи трубы.
↑
В каких случаях необходим расчет?
Если быть точным, то расчет теплоотдачи выполняется только для одной цели, он позволяет определить, какое количество тепла выделяется с поверхности трубы.
Но необходимы такие данные в двух противоположных случаях:
- Расчет эффективности отопления. В данном случае определяется необходимый диаметр элементов отопительной системы для получения требуемой температуры в помещении.
- Расчет теплопотерь выполняется для выбора наиболее эффективных материалов для утепления коммуникаций.
Расчет теплоотдачи стальных труб в обоих случаях выполняется по одной методике.
↑
Методика расчета
Формула определения теплоотдачи достаточно проста, но стоит учитывать то, что она дает приблизительные результаты. Существует множество нюансов, оказывающих свое влияние. Поэтому, если вам необходимы точные данные, какая теплоотдачаименно при ваших условиях, лучше обратиться к специалисту.
Q=K x F x ∆t,
где: Q – теплоотдача, Ккал/ч
F – площадь нагреваемой поверхности труб, кв м
Коэффициент теплопроводности зависит не только от материала, из которого изготовлены трубы.
Большую роль играют и следующие данные:
- Диаметр
- Количество ниток (линий) обогревательного устройства
- Тепловой напор изделия
Он, в свою очередь, определяется по целому ряду сложных формул, поэтому проще пользоваться специальными таблицами, в которых имеются средние данные.
Так для стальных труб он может варьироваться от 8 до 12,5.
Площадь поверхности определяется по простейшим формулам из школьного курса геометрии, так для трубы круглого сечения она равняется площади цилиндра:
F = П х d x l,
где: П = 3,14
d – диаметр трубы
l – длина трубы
Тепловой напор определяется по следующей формуле:
∆t= 0,5 х (tп + tо) – tв,
где: tп – температура теплоносителя на входе, градусов
tо – температура теплоносителя на выходе, градусов
tв – температура в помещении, градусов
Если вас интересует теоретическая теплоотдача стальной трубы, то согласно СНиП применяются следующие значения теплового напора:
- tп = 80 градусов
- tо = 70 градусов
- tв = 20 градусов
Следовательно, тепловой напор ∆t = 55 градусов.
Если вы будете выполнять расчет для трубы, которая имеет теплоизоляцию, то полученный результат необходимо будет умножить коэффициент полезного действия утеплителя.
↑
Пример расчета
В качестве примера рассчитаем, сколько тепла отдает стальная труба с такими параметрами – диаметр 25 мм, длина 1 метр. Расчет делаем теоретический, следовательно, тепловой напор 55 градусов, труба не утеплена.
Определяем площадь поверхности:
F = 3,14 х 0,025 х 1 = 0,0785 кв м
Из таблицы выбираем значение коэффициента теплопроводности. Для регистра в одну нитку, с диаметром меньшим 40 мм, при тепловом напоре 55 градусов, имеем К = 11,5.
Q = 11,5 х 0,0785 х 55 = 49,65 Ккал/ч
Как видите, в теории все достаточно просто, но практика значительно отличается от теории. Поэтому самостоятельно выполнять подобные расчеты можно только в самых простых случаях.
↑
Как увеличить теплоотдачу?
Благодаря имеющемуся соотношению объема трубы к площади ее поверхности, достаточно часто возникает необходимость увеличить ее способность отдавать тепло. Это требуется для наиболее эффективного отопления помещений.
О том, как увеличить теплоотдачу трубы, известно уже давно, на практике применяли и применяют следующие способы.
Пример эффективного увеличения теплоотдачи – конвектор, применявшийся в системах отопления еще в советские времена. Он представлял собой согнутую трубу (U-образная форма) с наваренными перпендикулярно ей пластинами. Данный метод называется оребрение, он применяется и в современных отопительных устройствах.
Неплохой результат дает и окраска излучающих тепло поверхностей матовой черной краской. Конечно это не слишком хороший вариант с точки зрения дизайнера, но он существенно повышает инфракрасное излучение прибора.
Обеспечить более высокую теплоотдачу системы отопления можно было путем увеличения площади поверхности нагревательных элементов.
Раньше это достигалось несколькими способами:
- Увеличение длины труб. Простой пример – обычный полотенцесушитель, коэффициент теплоотдачи трубы, конечно, не меняется, более эффективный обогрев получали именно за счет увеличения длины.
- Еще один способ повышения эффективности отопления — применение регистров. Они представляют собой несколько параллельных линий труб, отдача тепла и в этом случае достигалась за счет увеличения рабочей площади устройства. Конечно, сравнивать теплоотдачу регистра и современных отопительных приборов нельзя, но в недавнем прошлом подобная конструкция во многих случаях становилась единственно возможной.
Появление новых материалов дало возможность использовать другие способы повышения эффективности отопления. Самый популярный — теплый водяной пол, правда, в последнее время стальные трубы в этой сфере не применяются, появились более современные материалы, но принцип тот же.
Существенное увеличение длины греющих элементов позволяет получить эффективное отопление.
Сейчас для монтажа систем водяного теплого пола, в основном, применяют металлопластик и другие виды полимерных труб.
При использовании металлопластиковых труб не стоит забывать о том, что не следует замуровывать в стяжку фитинги, особенно компрессионные. Лучше всего, если вся линия будет проложена целой трубой.
В связи с тем, что теплоотдача трубы стальной все-таки ограничена, все чаще стали применяться другие материалы, например алюминий. Радиаторы из него обладают высоким коэффициентом теплоотдачи.
↑
Утепление труб
Если в отапливаемых помещениях все делается для того, чтобы взять от трубы как можно больше тепла, то в магистральных линиях существует совершенно противоположная потребность — снизить теплоотдачу по максимуму.
Для этого применяется утепление труб.
Рынок материалов для этих целей достаточно обширен, поэтому проблем с выбором утеплителя не возникает никаких. Кроме наиболее дешевых стекловолоконных утеплителей, применяют базальтовую вату, пенополиуретан, пенополистирол.
Наиболее эффективно теплоотдача труб стальных может быть снижена в заводских условиях. Выпуск труб со слоем утеплителя и полиэтилена постоянно увеличивается, на сегодняшний день монтаж магистралей отопления из таких материалов является одним из лучших способов снижения теплопотерь.
Как видите, знание фактической теплоотдачи необходимо для решения многих технических проблем, связанных с сооружением систем горячего водоснабжения и отопления. Поэтому при проектировке данных систем обязательно выполняйте подобные расчеты, а еще лучше доверьте это специалисту.
Стальные водогазопроводные трубы являются самым популярным металлопрокатом широкого применения. Кроме использования для прокладки коммуникаций в соответствии с названием, они успешно выполняют функции отопительных приборов. Из труб вгп изготавливают гладкие и ребристые регистры разной конфигурации, которые по эффективности теплоотдачи не уступают современным радиаторам. Они прекрасно подходят для транспортировки теплоносителя в системах с естественной циркуляцией, при этом попутно участвуя в обогреве помещений.
Устанавливая стальные водогазопроводные трубы для отопления, очень важно знать их основные характеристики. В первую очередь к ним относятся вес и коэффициент теплоотдачи. Тщательно выполнив предварительные расчеты, вы убережете себя от неожиданных сложностей при монтаже и обеспечите требуемый эффект при эксплуатации.
Сортамент водогазопроводных труб
Водогазопроводные трубы изготавливаются в соответствии с требованиями государственного стандарта – ГОСТ 3262-75. Он действует уже более 40 лет и регламентирует все размеры и технические требования.
В сортаменте выделяется 3 разновидности труб:
- Легкие;
- Обычные;
- Усиленные.
Тип трубы определяется толщиной стенки. Она может варьироваться для разных диаметров от 1,8 до 5,5 мм. Усиление стенок позволяет изделиям выдерживать большее давление и обеспечивает более длительный срок службы. При этом, естественно, увеличивается расход металла на изготовление, стоимость и вес.
Приведенная в ГОСТе таблица веса стальных водогазопроводных труб позволяет определить массу 1 м погонного в зависимости от типа и диаметра.
Важно! Масса, определенная по таблице, является теоретической, фактическое значение может отличаться на 4-8%, что бывает ощутимо при больших партиях. Оцинкованные изделия всегда тяжелее примерно на 3-5%.
Как видно из таблицы, труба водогазопроводная стальная может иметь условный проход от 6 до 150 мм, что соответствует интервалу от ¼ до до 6 дюймов. Размеры в дюймах часто используются для маркировки фитингов и запорно-регулирующей арматуры. Поэтому очень важно правильно оперировать этими единицами измерения при комплектации системы.
На заметку: если под рукой нет таблицы, можно самостоятельно провести пересчет диаметра. Для этого достаточно знать, что 1 английский дюйм соответствует средней толщине большого пальца взрослого мужчины и равняется 25,4 мм. Все калибры легко определить, разделив значение условного прохода на 25 с округлением до ближайшего стандартного значения.
Масса трубы может быть также найдена вручную с помощью простых формул геометрии и физики, представленных на рисунке ниже. При больших объемах расчетов удобно использовать специальный онлайн калькулятор, который позволяет автоматизировать процесс.
На рисунке приняты следующие обозначения:
d – внутренний диаметр трубы;
D – наружный диаметр;
b – толщина стенки;
S – площадь металла в поперечном сечении;
V – объем металла;
m – масса изделия;
ρ – удельный вес стали, равный 7,85 г/см3.
Важно! Следует учитывать, что внутренний диаметр и условный проход – это не одно и то же. Трубы с разными толщинами стенок имеют разные внутренние диаметры при одинаковом условном проходе. Под условным проходом понимают некую стандартную величину в линейке сортамента, которая лишь примерно равна значению d. Приведение труб разных типов к одному условному диаметру значительно упрощает подбор фасонных элементов и других комплектующих.
Необходимо отметить высокие прочностные характеристики стальных труб. Они имеют жесткость, характерную для металлического прута аналогичного диаметра. При этом намного легче и дешевле. Так, изделие самого тяжелого типа будет иметь вес на 30-40% меньше, чем цельнометаллический прокат.
Благодаря этому, водогазопроводная труба широко применяется не только для транспортировки различных сред любой температуры, но также в строительстве и машиностроении для сооружения разнообразных конструкций.
Виды отопительных регистров
Стальные отопительные регистры представляют собой водогазопроводные или электросварные трубы, которые с помощью сварки соединяются в приборы для обогрева помещений. Они могут быть разной конфигурации. В соответствии с формой приборов выделяют следующие разновидности:
- Змеевиковые;
- Секционные.
На рисунке показаны некоторые варианты их конструктивного исполнения.
Секционные в свою очередь подразделяются на виды в зависимости от способа соединения: ниткой или колонкой. В первом случае нагретая жидкость проходит последовательно по каждой трубе, двигаясь по прибору, как в змеевике. Во втором – теплоноситель входит в каждую последующую трубу с двух сторон параллельно, как показано на рисунке выше.
Иногда применяют аналогичные конструкции из металлического профиля прямоугольного или квадратного сечения. Они несколько дороже круглых, но могут быть удобны для самостоятельного изготовления при наличии исходного материала.
Несмотря на непривлекательный внешний вид, стальные регистры довольно популярны в помещениях технического назначения. Их часто можно встретить в гаражах, мастерских, производственных цехах, а иногда и в общественных зданиях. Некоторые домовладельцы отдают предпочтение именно регистрам из труб из-за относительной дешевизны изделия и возможности изготовления своими руками прибора нужной длины и формы.
По способности отдавать тепло такие приборы несколько уступают радиаторам аналогичной длины, но при этом имеют меньшую стоимость. Важным преимуществом гладкотрубных регистров является простота в уходе за ними. Именно удобство регулярного очищения обуславливает их частое применение в медицинских учреждениях.
Для увеличения теплоотдачи стальной трубы используют оребрение из пластин. Они существенно увеличивают площадь контакта с окружающим воздухом, к тому же улучшают конвекцию. Эффективность таких отопительных приборов примерно раза в 3 выше, чем гладкотрубных. Недостаток регистров с оребрением только в сложности удаления пыли, которая скапливается между пластинами.
Существуют и более сложные современные конструкции вертикальных регистров. Они могут быть как прямыми, так и дугообразными в плане, повторяя очертания самых сложных архитектурных форм. Возможны варианты расположения колонок в один или два ряда. Такие регистры очень удобны для больших высоких помещений и дают свободу смелым дизайнерским решениям.
Определение теплоотдачи
Для правильного подбора размера регистров для отопления помещений в соответствии с теплопотерями необходимо знать значение теплоотдачи трубы длиной 1 метр. Эта величина зависит от используемого диаметра и разницы температур теплоносителя и окружающей среды. Температурный напор определяется по формуле:
∆t= 0,5·(t1 + t2) – tк,
где t1 и t2 – температуры на входе в котел и выходе из него соответственно;
tк – температура в отапливаемой комнате.
Быстро определить ориентировочное значение количества тепла, получаемого от регистра, поможет таблица теплоотдачи 1 м стальной трубы. Не смотря на то, что результат получается весьма приближенным, этот метод является самым удобным и не требует проведения сложных расчетов.
Для справки: 1 БТЕ/ час · фут2 ·oF = 5,678 Вт/м2К = 4,882 ккал/час· м2 ·oC.
Таблица показывает, какой будет теплоотдача стальных труб в воздушной среде при некоторых температурных перепадах. Для промежуточных значений разницы температур выполняются расчеты путем интерполяции.
Для более точного определения количества тепла, которое дает стальная труба, следует пользоваться классической формулой:
Q=K ·F · ∆t,
где: Q – теплоотдача, Вт;
K – коэффициент теплопередачи, Вт/(м2· С);
F – площадь поверхности, м2;
Принцип определения ∆t был описан выше, а значение F находится по простой геометрической формуле для поверхности цилиндра: F = π·d·l,
где π = 3,14, а dиl – диаметр и длина трубы соответственно, м.
При расчете участка длиной 1 м формула приобретает вид Q = 3,14·K·d·∆t.
На заметку: при определении теплоотдачи одиночной трубы достаточно подставить справочное значение коэффициента теплообмена для стали при передаче тепла от воды к воздуху, которое составляет 11,3 Вт/(м2· С). Для отопительного прибора значение К зависит не только от материала, из которого изготовлены трубы, но также от их диаметра и количества ниток, так как они влияют друг на друга.
Средние значения коэффициентов теплопередачи для самых популярных типов нагревательных приборов приведены в таблице.
Важно! Подставляя значения в формулы необходимо внимательно следить за единицами измерения. Все величины должны иметь размерности, которые согласовываются между собой. Так, коэффициент теплопередачи, найденный в ккал/(час· м2 ·С) необходимо перевести в Вт/(м2·С), учитывая, что 1 ккал/час = 1,163 Вт.
Безусловно, таблица теплоотдачи стальных труб позволяет получить результат более быстро, чем расчет по формулам, но если важна точность, придется немного повозиться.
Чтобы определить необходимый размер регистра, требуемую тепловую мощность нужно разделить на теплоотдачу 1 метра с округлением в большую сторону к ближайшему целому числу. Для ориентира можно взять средние данные для утепленного помещения высотой до 3 м: 1 м регистра при диаметре 60 мм способен обогреть 1 м2 помещения.
На заметку: Как видно из таблицы, коэффициент К для стальных труб может меняться от 8 до 12,5 ккал/(час· м2 ·С). Увеличение диаметров и количества ниток приводит к уменьшению эффективности передачи тепла. В связи с этим для увеличения теплоотдачи регистра следует отдавать предпочтение увеличению длины элементов.
Необходимо учитывать также, что трубы больших размеров требуют повышенного объема воды в системе, что создает дополнительную нагрузку на котел. Рекомендуемое расстояние между нитками равно равняться диаметру труб плюс еще 50 мм.
Если система заполняется не водой, а незамерзающей жидкостью, то это существенно влияет на теплоотдачу регистра и требует увеличения его размеров после проведения дополнительных расчетов. Это особенно актуально при использовании приборов с ТЭНами и маслом в виде теплоносителя.
Заключение
Стальной трубопровод является довольно прочным, долговечным изделием с хорошей теплоотдачей. Регистры из гладких труб могут иметь различные конфигурации, очень удобны в уходе и не требуют периодической промывки. Это позволяет им успешно конкурировать с легкими биметаллическими и алюминиевыми отопительными приборами, а также с традиционными «неубиваемыми» чугунными радиаторами.
Водогазопроводные трубы получили широкое распространение в наружных тепловых сетях при открытой прокладке благодаря высокой жесткости и износоустойчивости. Целесообразность использования стальных труб для отопления помещений определяется условиями эксплуатации, финансовыми возможностями и эстетическим вкусом хозяев. Применение регистров наиболее оправдано в производственных и технических помещениях, но и в других случаях у них найдутся свои преимущества.
Автор (Эксперт Сайта): Ирина Чернецкая
Главная | Металлические | Теплоотдача 1 м. стальной трубы
Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.
Стальная труба
Для каких систем нужен расчёт?
Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.
Радиатор из стальных труб
Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.
Как оптимизировать теплоотдачу стальной трубы?
В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.
Расчет
Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.
В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.
Производим расчёт
Формула, по которой считается теплоотдача следующая:
Q = K*F*dT, где
- К – коэффициент теплопроводности стали;
- Q – коэффициент теплоотдачи, Вт;
- F – площадь участка трубы, для которого производится расчёт, м2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.
Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.
dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.
dT = (0,5*(T1 + T2)) — Tк
Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.
Рассчитываем отдачу для 1 м. изделия
Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.
Q = 0,047*10*60 = 28 Вт.
Здесь
- К = 0.047, коэффициент теплоотдачи;
- F = 10 м2, площадь трубы;
- dT = 60° С, температурный напор.
Об этом стоит помнить
Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.
Похожие статьиИнструкция по изготовлению витой трубыСварка стальных труб отопления своими рукамиОптимальные способы соединения ПВХ трубО сайте
Опубликовано 18 мая 2018Рубрика: Теплотехника | 29 комментариев
Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее…
Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.
Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.
Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:
y=f (x1, x2, x3, …, xn), где:
- y – значение функции (искомый расчетный параметр);
- x1, x2, x3, …, xn – значения аргументов функции (исходные данные).
Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.
Расчет в Excel теплоотдачи трубы.
Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.
В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.
Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.
Теория, алгоритмы, литература.
Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).
При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.
Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.
В любом случае возникает необходимость оперативного и точного расчёта:
- параметров теплообмена между трубой и окружающей её средой;
- затрат энергии на транспортирование теплоносителя (воды) через трубу.
Теплоотдача «голой» трубы
Параметры, знание которых позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.
На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.
При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:
- перепад температур dt=tвода— tвозд, как разность электрических потенциалов;
- тепловой поток q, как электрический ток;
- термическое сопротивление Rt, как электрическое сопротивление.
По аналогии с законом Ома получаем следующее уравнение:
q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rнар), Вт.
Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:
- конвективному;
- контактному;
- излучением.
Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.
1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой
Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:
- αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
- Fвн — площадь смачиваемой внутренней стенки трубы, м².
αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:
- Nu – критерий Нуссельта;
- λвода – коэффициент теплопроводности воды, Вт/(м·°С);
- Dтр – гидравлический диаметр трубы, м.
Число Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:
Nuвода=С·Reводаm·Prводаn·K — число Нуссельта для движущейся воды в цилиндрической трубе, где:
- Reвода – число Рейнольдса для движущейся воды;
- Prвода – число Прандтля для воды;
- С, m, n и K – индексы, значения которых зависят от характера потока воды (ламинарный или турбулентный).
2. Термическое сопротивление твёрдой стенки цилиндрической трубы
Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:
- Dнар – наружный диаметр трубы, м;
- Dтр – внутренний диаметр трубы, м;
- λтр – к-т теплопроводности материала трубы, Вт/( м·°С);
- Lтр – длина трубы, м.
3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом
Rнар=1/[(αк+αл)·Fнар] – термическое наружное сопротивление, °С/Вт, где:
- αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
- αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
- Fнар — площадь омываемой воздухом наружной стенки трубы, м².
αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:
- Nuвозд – критерий Нуссельта для воздуха;
- λвозд – коэффициент теплопроводности воздуха, Вт/( м·°С);
- Dнар – наружный диаметр трубы, м.
Nuвозд=С·(Grвозд·Prвозд)n·K — число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:
- Grвозд – критерий Грасгофа для воздуха;
- Prвозд – критерий Прандтля для воздуха;
- С, m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.
Если Grвозд·Prвозд≤109 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.
Если Grвозд·Prвозд>109 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.
Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:
- g– ускорение свободного падения, м/с²;
- β – температурный коэффициент объёмного расширения для воздуха, 1/К;
- ρвозд – объёмная плотность воздуха, кг/м³;
- dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
- μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).
qл=eизлT+tвозд+dtнар)4-(T+tвозд)4] — удельный тепловой поток за счёт излучения, Вт/м², где:
- eизл – излучательная способность (степень черноты) поверхности трубы;
- – постоянная Стефана-Больцмана, =5,67·10-8 Вт/(м²·К4).
αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).
4. Перепад температур между наружной стенкой трубы и воздухом
Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:
Rнар=φ(dtнар) -> dtнар=Rнар·q -> Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.
5. Итоговые обобщения алгоритма
При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.
Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.
Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.
Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.
Nuвозд=С·(Grвозд·Prвозд)n — критерий Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:
Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.
Если Grвозд·Prвозд≤109 — ламинарный поток воздуха: С=0,59; n=0,25.
Если Grвозд·Prвозд>109 — турбулентный поток воздуха: С=0,021; n=0,4.
6. Пользовательские функции
Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:
- ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:
РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.
- ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:
РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.
- ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:
dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.
- ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:
dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.
Теплоотдача изолированной трубы
На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.
Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.
Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:
- Dиз – наружный диаметр теплоизоляции, м;
- Dнар – наружный диаметр голой трубы, м;
- λиз – коэффициент теплопроводности материала теплоизоляции, Вт/( м·°С);
- Lтр – длина трубы, м.
q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.
Остальные формулы — те же, что и в расчетах «голой» трубы.
Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:
- ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:
РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.
- ПФ для вычисления тепловой мощности изолированной вертикальной трубы:
РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.
- ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:
dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.
- ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:
dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.
Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб
В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.
Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.
Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.
Литература:
- Х.Уонг Основные формулы и данные по теплообмену для инженеров. Справочник. Москва. Атомиздат. 1979.
- Ф.Крейт, У.Блэк Основы теплопередачи. Москва, Мир, 1983.
- М.А. Михеев, И.М. Михеева Основы теплопередачи. Издание второе. Москва, Энергия, 1977.
- В.Р. Кулинченко Справочник по теплообменным расчётам. Киев. Тэхника, 1990.
Ссылка на скачивание файла: raschet-teplootdachi-truby (xls 271,0KB).
Другие статьи автора блога
На главную
—>
Статьи с близкой тематикой
Отзывы
Вопрос, какие лучше трубы для отопления, всплывает во время строительства или капитального ремонта частной жилой недвижимости. Хозяева домов и квартир задают его консультантам в строительных магазинах, инженерам-монтажникам и сотрудникам ремонтных бригад, но однозначного ответа не получают.
Это объективная реальность, т.к. современные греющие системы существенно отличаются друг от друга и требуют индивидуального выбора. Мы познакомим вас со всеми видами труб, применяемых в настоящее время в сооружении трубопроводов. С учетом наших рекомендаций вы сможете выбрать оптимальный вариант.
Главные критерии выбора труб
Чтобы разумно и правильно выбрать трубы для домашней отопительной системы, учитывают следующие позиции:
- тип монтажа трубопроводного комплекса – поверхностный или скрытый (внутренний);
- предполагаемая мощность давления – оценка диапазона от базовых до максимально возможных показателей;
- вид отопительной системы – автономные или центральные коммуникации с самотечной либо принудительной циркуляцией греющего состава;
- максимальная температура, на которую рассчитан теплоноситель;
- конфигурационные особенности греющего оборудования – однотрубный или двухтрубный комплекс.
Только зная все эти факторы, приступают к выбору типа материала, который максимально эффективно проявит себя в конкретных указанных условиях.
Разновидности для греющих систем
В современных отопительных системах используют трубопрокат и детали из таких материалов, как металл или пластик. В первую категорию входят обыкновенные стальные, легированные стальные и медные трубы. Ко второй относятся полипропиленовый, металлопластиковые и полиэтиленовые сшитые коммуникационные элементы.
Все они имеют определенные положительные качества и эффективно проявляют себя в разных ситуациях. Выбор конкретного вида труб происходит индивидуально в зависимости от предполагаемых эксплуатационных условий и прочих важных параметров.
Особенности стальных труб
Еще совсем недавно стальные трубы использовались в подавляющем большинстве отопительных систем и были безальтернативным материалом. Сегодня их позиции существенно пошатнулись, а рядом появились серьезные конкуренты.
Однако полностью вытеснить с рынка стальные трубы не удалось. До сих пор они успешно применяются, но, преимущественно, в автономных самотечных комплексах, где требуется прокладка крупнодиаметровых коммуникаций.
Прокладку стальных труб осуществляют профессиональные мастера до начала отделочных мероприятий, так как сварочные работы могут повредить настенный или напольный декор
Среди основных достоинств труб из стали отмечают высокую склонность к теплопроводности, малое линейное расширение при активном прогреве, стойкость к интенсивному давлению.
Обоснованными преимуществами считают беспрецедентную прочность, как на прямых, так и на закругленных отрезках, способность выдерживать агрессивный температурный режим и доступную стоимость элементов.
Для сборки системы из стальных труб кроме сварки существует альтернативный способ – монтаж на резьбовые соединения посредством доборных деталей и фитингов. Чтобы стыки не давали течей, их уплотняют сантехническим льном
Из недостатков указывают на проблемный и трудоемкий монтаж, невозможный без наличия специализированного дорогостоящего оборудования, с которым могут работать только профессионально обученные мастера, имеющие большой опыт проведения подобных мероприятий.
Затрудняют процесс обустройства отопительного комплекса и внушительные габариты труб. Сделать все в одиночку не получится, лучше привлечь кого-то из друзей или родных, обладающих навыками сварщиков и монтажников. Бригадой работать легче и быстрее, можно организовать все четко и аккуратно, обеспечив системе необходимую герметичность.
Стальные трубы демонстрируют хороший уровень стойкости к гидроударам и имеют впечатляющую пограничную температуру плавления (до 1500°С), в отличие от других материалов
Для организации скрытых отопительных систем стальные трубы и применяемые для их соединения стальные фитинги категорически не подходят. Металл имеет низкий антикоррозийный порог и во влажных условиях быстро ржавеет, прогнивает и дает течь.
Для устранения неполадки требуется полный демонтаж декоративного покрытия, если труба проходит в помещении, либо масштабные земляные работы, когда проблема возникает на подходе к дому.
В чем отличие легированной стали?
Легированная сталь – это прочный материал, имеющий, кроме традиционных примесей, различные добавки, улучшающие физические свойства металла.
Примером легированного материала является нержавейка – это особый стальной сплав, содержащий в составе не менее 12% хрома. Эта добавка обеспечивает стойкость труб к коррозийным проявлениям и легкую обработку специальными инструментами.
Приобретая трубы из нержавейки, важно принимать во внимание содержание в металле углерода. Чем его больше, тем выше прочность, но ниже гибкость. При малых температурах такие изделия становятся хрупкими и область их применения сокращается
Для производства труб со сварным швом используют холодно- или горячекатные стальные листы с рабочей толщиной 0,4 – 5 мм и 2 -50 мм соответственно.
Готовые изделия имеют меньший вес, нежели обычные стальные, обладают хорошей устойчивостью к разрушению структуры и механическому повреждению. За счет малого коэффициента теплового расширения легко выдерживают в процессе эксплуатации серьезные температурные нагрузки. Отлично функционируют при давлении до 16 бар.
Стоимость легированных труб несколько выше, нежели у аналогов из черных металлов. Однако затраты оправданы, ведь простые стальные коммуникации служат в среднем 15-20 лет, тогда как нержавейка надежно работает как минимум в 3 раза дольше
Еще одно неоспоримое достоинство легированных нержавеющих труб – способность транспортировать не только теплоноситель, раскаленный до высоких температур, но даже и разогретый пар.
Разновидности стальных нержавеющих труб
Трубы из легированной нержавеющей стали делают в двумя способами: сварным и бесшовным. В первом варианте листы металла при помощи электросварки соединяют между собой, получая продольный или спиральный шов. Для предупреждения околошовной коррозии область стыка подвергают специальной обработке и шлифовке.
Сварные трубы со спиральным или продольным швом стоят дешевле бесшовных аналогов, но срок их службы меньше. Кроме того, они имеют ограничения по максимальному рабочему давлению и проявляют уязвимость к механическим повреждениям
Бесшовные изделия делают посредством холодного или горячего деформирования цельных трубных заготовок из нержавеющей легированной стали. Холодным способом производят тонкостенные трубы, а горячим – толстостенные. Готовая продукция имеет идеально гладкую поверхность и отличается беспрецедентной надежностью.
Бесшовные стальные трубы идеально подходят для обустройства обогревательных систем любой сложности. Несмотря на высокие физические характеристики, они имеют разумную стоимость, а тонкостенные модели успешно конкурируют с более дорогими медными изделиям
Трубы, сделанные по бесшовной технологии, не боятся коррозийных проявлений, отлично функционируют в суровых и агрессивных эксплуатационных условиях и спокойно выдерживают рекордные температуры и огромное давление.
Медные трубы для отопления
При изготовлении труб для обогревательных систем используют медь высокого качества, в редких случаях медно-цинковый сплав, где объем цинковой составляющей не превышает 5%. Для снижения уровня теплопотери и придания изделиям более привлекательного вида внешнюю поверхность покрывают полиэтиленовым или поливинилхлоридным слоем.
Медные трубы для отопительной системы проходят дополнительную обработку фосфором. Это существенно повышает их физические характеристики, а в частности, стойкость к воздействию воды
Среди основных преимуществ материала для трубопроводов из меди в первую очередь отмечают непревзойденную прочность, благодаря которой изделия при интенсивной эксплуатации служат в течение 100 лет и не подвергаются воздействию коррозии.
Их теплопроводность составляет 389,6 Вт/мК, что значительно превышает фактические рабочие показатели чугуна, стали и металлопластика.
Медные трубы в процессе нагревания даже до высоких температур не выделяют никаких вредных испарений, поэтому являются абсолютно безопасными для человека
Диапазон рабочих температур у медных труб очень широк. Они хорошо проявляют себя как при высоких (до +250°С), так и при низких (до -100°С) температурных режимах, не плавятся при интенсивном прогреве, не трескаются и не деформируются в процессе эксплуатации.
Идеально держат изначальную форму, не боятся высокого давления в системе и даже в зоне паяных соединений легко переносят нагрузку в 200-400 атмосфер, а это в десятки раз превышает способность металлопластика в этой же области.
Показатели термического расширения медных труб просто минимальны. При регулярном воздействии на металл теплоносителя температурой более 90°С каждый погонный метр коммуникаций удлиняется примерно на 0,1%. Все остальные материалы и здесь значительно уступают меди.
Благодаря способности сохранять с течением времени эстетичный, привлекательный вид подходят для прокладки трубопроводов не только внутренних, но и внешних отопительных систем и могут служить не только по прямому назначению, но и нести функцию декоративного интерьерного элемента.
Из минусов профессионалы отмечают несочетаемость с другими металлами. Не рекомендуют с целью удешевления использовать для медных труб соединительные детали из чугуна или нержавеющей стали. Такая «экономия» в последствии выйдет боком хозяину, так как химическая реакция между элементами в итоге спровоцирует коррозию всей отопительной системы.
В сборке трубопроводов из меди используются только медные фитинги. С их помощью производят соединение опрессовкой, высокотемпературной и низкотемпературной пайкой.
Среди недостатков медных труб чаще всего упоминают их высокую стоимость в сравнении с иными видами материалов
Отличительные черты полипропиленовых изделий
Полипропилен – это жесткий нетоксичный синтетический полимер с высокими физико-механическими характеристиками. Трубы, сделанные из этого современного материала, демонстрируют исключительную ударопрочность и способность к многократному изгибу, низкую газо- и паропроницаемость, износостойкость и полную диэлектричность.
Преимущества ПП материала
Благодаря этим качествам, трубный материал из ПП активно используют для обустройства отопительных систем как в производственных масштабах, так и в частном секторе.
Отопительную систему из полипропиленовых труб можно смонтировать своими руками. Но необходимо обеспечить отсутствие резких перепадов давления и температуры. Создать такие условия поможет установка котла, имеющего ограничение максимально возможного прогрева воды (не более 70С°)
Трубы из полипропилена входят в разряд бюджетных коммуникационных деталей и обладают небольшим весом, позволяющим легко перевозить их и монтировать в одиночку.
Среди прочих достоинств выделяют такие позиции, как:
- идеально гладкая внутренняя поверхность, не способствующая накоплению известковых отложений, существенно усложняющих свободную циркуляцию теплоносителя;
- быстрый и доступный монтаж, не требующий использования профессионального дорогостоящего оборудования (всю работу можно сделать с помощью утюга для пайки, который настолько прост в эксплуатации, что без труда «покоряется» даже очень далекому от подобных работ человеку);
- продолжительный срок службы без потери КПД (в среднем около 25 лет при полноценной нагрузке);
- хорошая стойкость к отрицательным температурам;
- аккуратный, эстетичный внешний вид, не ухудшающийся с течением времени.
К минусам полипропиленовых труб относят слабую жесткость пластика, которая в будущем способна спровоцировать провисание тепловой магистрали и, как следствие, привести к трещине в стыке или обрыву.
Чтобы устранить проблему, просто залатать фрагмент не получится. Для последующей корректной работы и восстановления целостности отопительного комплекса потребуется заменить отрезок трубы, расположенный между двумя фитингами.
Соединение деталей полипропиленового трубопровода производится посредством сварки, специфика производства которой изложена в рекомендуемой нами статье.
С особенностями выбора сварочного аппарата для сооружения трубопровода из полипропилена и рекомендуемыми пределами рабочих температур для выполнения пайки вы также сможете ознакомиться на нашем сайте.
Типы полипропиленовых труб для отопления
Чтобы домашняя греющая система работала дольше и на протяжении всего эксплуатационного периода демонстрировала максимально высокие показатели КПД, используют полипропиленовые трубы армированного типа. Их классифицируют по виду армирующего материала.
Применяемые в устройстве отопления ПП трубы армируют алюминиевой фольгой по внешнему слою, в середине или по внутреннему краю. Листы металла в этом случае могут быть несплошными, сплошными и гофрированными.
Полипропилен высокопластичен и при контакте с горячим теплоносителем может увеличиться в размерах. Если коммуникации вмонтированы в стены или пол, это может вызвать трещины в покрытии. Армированные трубы расширению подвержены по минимуму благодаря наличию защитного каркаса
Фольга уменьшает фактическое тепловое расширение материала и создает диффузионный барьер, не позволяя кислороду проникать через стенки. В результате осадок из кальция не образуется и не провоцирует окислительных процессов на стенках радиаторов и котла.
Эффективным армирующим материалом для труб служит и стекловолокно. Путем соэкструзии его помещают в срединном слое полипропиленовой трубы. Благодаря тому, что оба материала схожи по составу и базовым свойствам, во время сварки с фитинговым креплением образуется сплав высокой прочности, не подверженный расслоению даже в процессе длительной эксплуатации.
Полипропиленовые трубы со стекловолоконной арматурой просты и удобны в монтаже, в отличии от алюминиевых, не требуют дополнительной зачистки краев перед пайкой, демонстрируют великолепные звукоизоляционные свойства.
Полипропиленовые трубы, армированные стекловолокном, считаются наиболее подходящим вариантом для обустройства домашних отопительных систем и служат значительно дольше своих аналогов.
Еще одним современным армирующим элементом является композит. Он представляет собой смесь из полипропилена и стекловолокна. Добавленный в трубу, увеличивает адгезийные свойства армирующего слоя и усиливает такие эксплуатационные характеристики, как прочность и устойчивость к механическим повреждениям.
Правила сборки трубопроводов для систем отопления из полипропиленовых труб приведены в следующей статье, с содержанием которой мы советуем ознакомиться.
Трубы из сшитого полиэтилена
Сшитый полиэтилен – это прогрессивный материал, изготовленный с использованием современных технологий. Представляет собой полимер этилен с молекулами, соединенными поперечно путем химической или физической сшивки. Отличается однородной структурой, гибкостью и высоким уровнем прочности на разрыв.
В перечень главных достоинств труб из сшитого полиэтилена входят:
- прекрасные усадочные свойства;
- способность четко держать форму по линии сшивки даже при нагреве до 200 С°;
- отличная износостойкость в процессе интенсивной эксплуатации;
- отсутствие в составе галогенов и тяжелых металлов;
- невосприимчивость к коррозийным проявлениям и повышенному давлению;
- слабая уязвимость к химически активным агрессивным веществам;
- нормальная ударная вязкость при низких температурных показателях (вплоть до – 50 С°);
- минимальный процент расширения под воздействием тепла;
- подходят для скрытого монтажа;
- минимальная потребность в профилактическом обслуживании.
Благодаря своей пластичности материал легко поддается обработке и не требует для этого наличия специальных инструментов, особых профессиональных способностей или серьезного опыта. С обустройством системы отопления справится даже дилетант, имеющий под рукой пошаговую инструкцию по описанию необходимых работ.
Еще одна отличительная особенность труб из сшитого полиэтилена – это «эффект памяти», когда фрагмент «запоминает» свое положение в системе и не меняет его даже с течением времени
Самый значимый недостаток сшитого полиэтилена – высокая уязвимость к ультрафиолетовому излучению и объективная технологическая невозможность изготовления трубного материала большого диаметра.
Методы и технология сварки полиэтиленовых труб описаны в статье, полностью посвященной этому интересному вопросу.
Металлопластик для сооружения трубопроводов
Изделия из металлопластика – наиболее распространенный и практичный материал для обустройства домашних отопительных систем. Они гармонично сочетают в себе достоинства пластика и металла, лишь по минимуму вбирая недостатки обоих материалов.
Для сборки отопительной системы из металлопластиковых труб используют компрессионные фитинги. Они обеспечивают надежное соединение всех элементов, но нуждаются в последующем дополнительном обслуживании
Металлопластиковые трубы имеют сложную конструкцию и многоуровневую структуру. Внешний пластиковый слой работает как предохранитель и защищает изделие от агрессивного воздействия среды. Далее располагаются алюминиевая фольга и полимер повышенной гладкости, не дающие скапливаться внутри осадку и отложениям.
Соединение металлопластиковых труб производится с применением специализированных фитингов, предназначенных для опрессовки и зажима. В первом случае создаются теоретически разъемные соединения, которые все же не рекомендуется без особой необходимости разбирать. Во втором – неразъемные.
Для формирования соединений с пресс-фитингами не требуется дорогостоящий инструмент. С его выбором ознакомит статья, рекомендуемая нами к прочтению. Сборку системы сможет произвести совершенно неопытный исполнитель.
Из отличительных черт металлопластиковых труб наиболее важны такие, как:
- минимальное линейное расширение под воздействием теплоносителя, не приводящее к деформации и провисанию трубопроводной системы или ее отдельных фрагментов;
- прочность на сгиб и разрыв, пластичность в допустимых радиусах (при превышении порога показателей возможен «залом»);
- малый вес, существенно облегчающий процесс монтажа;
- коррозийная устойчивость;
- возможность обработки без использования специального оборудования.
К минусам причисляют не слишком продолжительный срок службы трубных изделий (до 15 лет по заявлению производителей) и значительную стоимость соединительных фитингов.
Выводы и полезное видео по теме
В видеороликах информация о том, как правильно выбрать оптимальный вариант труб для домашней отопительной системы.
Подробный обзор, полезные советы и любопытные нюансы использования для обогрева жилья медных, металлопластиковых, полипропиленовых и сшито-полиэтиленовых трубных деталей.
Варианты обустройства в жилом доме современной отопительной системы. Плюсы и минусы различных способов монтажа оборудования из металла и прочих популярных материалов.
Советы по выбору труб и фитингов для радиаторной системы отопления. На каком материале лучше остановиться, чтобы оборудование давало максимальную отдачу при разумном потреблении энергоресурса.
Дать однозначный ответ на вопрос, какие трубы предпочтительнее выбрать для обустройства отопления в частном доме или квартире, не сможет даже самый опытный профессионал. Каждый случай придется рассматривать отдельно, учитывая особенности проектирования конкретной греющей системы и финансовые возможности владельцев недвижимости.
Не стоит делать выбор, исходя только из цены. Лучше остановится на варианте, сочетающем в себе оптимальное качество и разумную стоимость, иначе в итоге можно оказаться в положении скупого, который заплатил дважды за проделанную работу. Тем более, что процесс монтажа греющего оборудования требует времени и доставляет определенные неудобства хозяевам жилища.
А какие трубы вы купили для устройства контура отопления в загородном доме? Что стало решающим фактором для совершения именно этой покупки? Пишите, пожалуйста, комментарии в расположенном ниже блоке, публикуйте фото по теме статьи, задавайте вопросы.
Используемые источники:
- https://vsetrybu.ru/teplootdacha-stalnoj-truby.html
- https://znatoktepla.ru/truby/harakteristiki-stalnyh-trub-dlya-otopleniya-raschet-vesa-i-teplootdachi.html
- http://trubygid.ru/teplootdacha
- http://al-vo.ru/teplotekhnika/raschet-teplootdachi-truby.html
- https://sovet-ingenera.com/otoplenie/o-drugoe/kakie-truby-luchshe-dlya-otopleniya.html