Комфорт в доме трудно представить без водопровода. А появление новой техники в виде стиральной, посудомоечной машин, бойлера и прочих агрегатов ещё больше повысило его роль в жилье образца 21 века. Но эти агрегаты требуют, чтобы вода поступала из водопровода с определённым напором. Поэтому человек, решивший обустроить свой дом системой водоснабжения, должен знать, как произвести расчёт требуемого давления воды в трубопроводе, чтобы все устройства работали нормально.
Для нормального функционирования водопровода давление в нем должно соответствовать нормам
Определение показателя
Давление в трубопроводе принято подразделять на следующие виды: рабочее, условное, пробное и расчётное. Без знания их отличий произвести расчёт перепада давления транспортируемой по инженерной коммуникации жидкости будет сложно. Соответственно, при подборе подходящих элементов водопровода хозяин столкнётся с трудностями, не позволяющими обеспечить комфортное пребывание в жилом помещении.
- Рабочее. Это наружное или внутреннее, обязательно максимальное избыточное давление, фиксируемое при стандартных составляющих протекания процесса транспортировки воды в нормальных условиях.
- Условное. Используют этот показатель при расчёте прочности трубопроводов (и сосудов), которые функционируют под определённым давлением при температуре воды 20˚С.
- Пробное. Этот простой показатель измеряется во время испытания конструкции. На его основе отслеживается поведение элементов системы при изменении давления в водопроводе. Такой подход служит своего рода генеральной страховкой перед прокладыванием сети.
- Расчётное. Под таковым подразумевается максимальное избыточное давление в полости трубопровода, продуцируемое транспортируемым по нему веществом. Следует учитывать, что воздействию подвергаются не только трубы, но и все элементы, входящие в состав инженерной коммуникации. Именно на основе расчётного давления определяется толщина стенки водопроводной трубы. От этого зависит функциональность, а также длительность эксплуатации системы и, конечно же, безопасность обитателей дома.
Напор воды в кране зависит от давления в водопроводной системе
Простой пример расчета давления в трубе
Как известно, не так давно водопровод подключался к водонапорной башне. Благодаря именно этому сооружению в сети водопровода создаётся давление. Единица измерения данной характеристики – атмосфера. Причём, размер расположенной вверху башни ёмкости не влияет на значение этого параметра, он зависит только лишь от высоты башни.
Полезно знать!На практике давление измеряется в метрах водяного столба. При заливании воды в трубу высотой 10 метров, в нижней точке будет фиксироваться давление, равное одной атмосфере.
Рассмотрим пример с домом в 5 этажей. Его высота – 15 метров. То есть на один этаж приходится 3 метра. Башня высотой 15 метров создаст на первом этаже давление 1,5 атмосферы. Значение этого показателя в трубе на втором этаже будет уже 1,2 атмосферы. Получается это вычитанием из числа 15 высоты одного этажа – 3 метра, и делением результата на 10. Проделав дальнейший расчёт, нам станет понятно, что на 5-м этаже давление будет отсутствовать. Логика подсказывает, что для обеспечения водой людей, проживающих на последнем этаже потребуется соорудить более высокую башню. А если речь идёт, например, о 25-этажном доме? Возводить такие большие сооружения никто не будет. С этой целью современные системы водоснабжения оборудуются глубинными насосами.
Давление на выходе подобного агрегата высчитывается очень просто. Например, если глубинный насос, мощности которого хватает поднять воду до отметки 50 метров водяного столба, погрузить в скважину на 15 метров, на уровне поверхности земли он создаст давление 3,5 атмосферы (50-15/10 = 3,5).
Обеспечить необходимый показатель давления в системе можно при помощи насоса
Как рассчитывается толщина трубы от действия давления
Когда вода движется по трубе, возникает сопротивление от трения её о стенки, а также о различные преграды. Это явление получило название гидравлическое сопротивление трубопровода. Его численное значение находится в прямой пропорциональной зависимости от скорости потока. Из предыдущего примера мы уже знаем, что на разных высотах давление воды различно, и эту особенность следует учитывать при расчёте внутреннего диаметра трубы, то есть её толщины. Упрощённая формула для вычисления данного параметра по заданной потере напора (давления) выглядит так:
Двн = КГСопр×Дл. тр./ПД×(Уд.вес×Ск/2g),
где: Двн. – внутренний диаметр трубопровода; КГСопр. – коэффициент гидравлического сопротивления; Дл.тр — длина трубопровода; ПД – заданная или допускаемая потеря давления между конечным и начальным участками магистрали; Уд.вес. – удельный вес воды — 1000 кг/ (9815 м/; Ск. – скорость потока м/сек.; g – 9,81 м/сек2. Всем известная константа — ускорение силы тяжести.
Потеря давления в арматуре и фасонных частях трубопровода с достаточной точностью определяется по потерям в прямой трубе эквивалентной длины и с таким же условным проходом.
Как рассчитать стенки трубы по давлению
Точный расчёт данного показателя стальных труб, которые работают под воздействием избыточного внутреннего давления, включает два этапа. Сначала вычисляется так называемая расчётная толщина стенки. Затем к полученному числу прибавляется толщина износа от коррозии.
Расчет давления необходим для подбора толщины стенок трубы
Совет! Изготавливая и монтируя трубопровод, не устанавливайте отдельные случайные вставки. Чтобы не спровоцировать аварию, работайте только с теми, размеры которых совпадают с расчётными.
Таким образом, обобщённая формула для расчёта толщины стенок выглядит следующим образом:
Т= РТС+ПК,
где: Т – искомый параметр – толщина стенок; РТС – расчётная толщина стенок; ПК — прибавка на коррозионный износ.
Расчётную толщину стенки в зависимости от давления вычисляем по следующей формуле:
РТС = ВИД×Днар/230×ДР×КПШ+Р ,
где: ВИД – внутреннее избыточное давление; Днар. – наружный диаметр трубы; ДР — допустимое напряжение на разрыв; КПШ – коэффициент прочности шва. Его значение зависит от технологии изготовления труб. На завершающем этапе расчета стенки трубы по давлению прибавляем к РТС значение параметра ПК. Берётся оно из справочника.
Давление и диаметр трубы
Правильное определение сечения труб не менее важно, чем их выбор по материалу изготовления. При некорректном расчёте диаметра и давления, в трубе возникнет турбулентность воздуха, в ней присутствующем, и в потоке воды. Из-за этого движение жидкости по трубе будет сопровождаться повышенным шумом, а на внутренней поверхности ветки водоснабжения сформируется большое количество известковых отложений. Кроме того, следует помнить, что существование зависимости давления от диаметра трубы может негативно отразиться на пропускной способности водопровода. На практике, многие обитатели квартир и домов сталкивались с ситуацией, когда при одновременном включении нескольких кранов напор воды резко падал. Возникает эта неприятность по двум причинам: когда давление упало во всей системе и при заниженном диаметре подключённых труб.
От диаметра трубы зависит пропускная способность водопроводной сети
Ниже приведена таблица для максимального расчётного расхода воды через трубопроводы наиболее распространённых диаметров при различном значении давления.
Таблица 1
Расход | Пропускная способность. Единица измерения – кг/час | |||||||||
Ду трубы | 100 | 80 | 65 | 50 | 40 | 32 | 25 | 20 | 15 | |
мбар/м | Па/м | 0,3 м/сек | 0,15 м/сек | 15 м/сек | ||||||
3,00 | 300 | 56160 | 27900 | 18000 | 8892 | 4680 | 3078 | 1415 | 767 | 331 |
2,80 | 280 | 54360 | 26928 | 17338 | 8568 | 4356 | 2970 | 1364 | 742 | 317 |
2,60 | 260 | 52200 | 25920 | 16740 | 8244 | 4356 | 2855 | 1310 | 713 | 306 |
2,40 | 240 | 50400 | 24876 | 16056 | 7920 | 4176 | 2740 | 1256 | 680 | 288 |
2,20 | 220 | 47880 | 23760 | 15336 | 7560 | 3996 | 2617 | 1202 | 652 | 281 |
2,00 | 200 | 45720 | 22644 | 14580 | 7200 | 3780 | 2488 | 1151 | 619 | 266 |
1,80 | 180 | 43200 | 21420 | 13824 | 6804 | 3589 | 2354 | 1080 | 583 | 252 |
1,60 | 160 | 40680 | 20160 | 12996 | 6408 | 3373 | 2210 | 1015 | 547 | 234 |
1,40 | 140 | 38160 | 18792 | 12132 | 5976 | 3143 | 2059 | 943 | 511 | 220 |
1,20 | 120 | 35100 | 17352 | 11196 | 5508 | 2898 | 1897 | 871 | 472 | 102 |
1,00 | 100 | 31932 | 15768 | 10152 | 5004 | 2632 | 1724 | 788 | 425 | 184 |
0,975 | 97,5 | 31500 | 15552 | 10044 | 4932 | 2596 | 1699 | 778 | 421 | 180 |
0,950 | 95,0 | 31104 | 15372 | 9900 | 4860 | 2560 | 1678 | 767 | 414 | 176 |
0,925 | 92,5 | 30672 | 15156 | 9756 | 4788 | 2524 | 1652 | 756 | 407 | 176 |
0,900 | 90,0 | 30240 | 14940 | 9612 | 4716 | 2488 | 1627 | 745 | 403 | 173 |
В большинстве стояках среднее значение давления находится в диапазоне атмосфер.
Расчёт домашнего водопровода
С практической точки зрения давление в водопроводе чаще всего ассоциируется с объёмом поставляемой воды за единицу времени, то есть с пропускной способностью ветки водоснабжения. В этом контексте и будет рассмотрен вопрос расчёта бытового водопровода. После изучения паспортных данных приборов и агрегатов, потребляющих воду, суммируется общий расход. Затем к полученной цифре добавляется расход всех установленных и используемых водоразборных кранов.
Для домашнего водопровода, работающего от скважины, выбор труб зависит от мощности насоса
Полезная информация! Одно такое сантехническое устройство пропускает через себя за одну минуту порядка 5-6 литров воды.
После этого все числа суммируются, и на выходе получается общий расход в доме воды. С учётом этих данных, покупается труба с диаметром, который обеспечит нужным давлением и, соответственно, количеством воды все водоразборные приборы, работающие одновременно.
Если домашний водопровод планируется подключить к городской сети, у хозяина выбора нет, он будет вынужден пользоваться тем, что имеется. Иное дело, если речь идёт о частном доме, питающимся от скважины. Тогда следует покупать насос, способный обеспечить водопровод давлением, которое соответствует расходам. Выбор производится по паспортным данным подобного агрегата. В определении диаметра вам поможет ниже размещённая таблица.
Таблица 2
Пропускная способность трубы | Диаметр и длина трубопровода | ||
Пропускная способность, л/мин | Диаметр трубы | Диаметр трубы | Длина водопровода, метры |
75 | 38 | 32 | Больше 30 |
50 | 32 | 25 | |
30 | 25 | 20 | Меньше 10 |
Здесь приведены параметры лишь наиболее часто используемой трубной продукции.
Современные средства
Если нет времени либо вы не склонны к математике, рассчитать расход воды через трубопровод с учётом перепада давления можно, воспользовавшись онлайн калькулятором. Интернет изобилует сайтами с таки инструментарием. Чтобы произвести гидравлический расчёт, необходимо учесть коэффициент потерь. Такой подход предполагает выбор:
- падения напора на погонный метр трубопровода;
- длины участка;
- внутреннего диаметра трубы;
- вида и материала водопроводной системы (пластмасса, железобетон, асбоцемент, чугун, сталь). Современные онлайн калькуляторы учитывают даже, например, меньшую шероховатость пластиковой поверхности по сравнению со стальной;
- способа расчёта сопротивления.
Кроме того, пользователю доступны опции учёта дополнительных характеристик трубопроводов, в частности, таких, как тип покрытия. Например:
- цементно-песчаное, нанесённое различными методами;
- внешнее полимерцементное или пластиковое;
- новые или проработавшие определённый срок трубопроводы с битумным покрытием либо без защитного внутреннего покрытия.
Если расчёт будет сделан правильно, при условии выполнения монтажа с соблюдением всех требований к водопроводу нарекания не возникнут.
Содержание
1. Гидростатическое давление
кг/см2 |
Н/м2 |
|
Техническая атмосфера |
1 |
98066,5 |
Миллиметр водяного столба |
0,0001 |
9,80665 |
Миллиметр ртутного столба |
0,00136 |
133,32 |
p=p+h,
h— вес (сила тяжести) столба жидкости высотойhс площадью
поперечного сечения, равной единице;
— удельный вес жидкости.
Величина превышения давления над атмосферным (pa) называется манометрическим, или избыточным, давлением:
Если давление на свободной поверхности равно атмосферному, то избыточное давление рм=h.
рвак= ра– р.
1. Общие сведения по гидравлическому расчету трубопроводов
Гидравлический расчет производится с целью определения диаметра трубопровода d при известной длине для обеспечения пропуска определенного расхода жидкости Q или установления при заданном диаметре и длине необходимого напора и расхода жидкости. Трубопроводы в зависимости от длины и схемы их расположения подразделяются на простые и сложные. К простым трубопроводам относятся трубопроводы, не имеющие ответвлений по длине, с постоянным одинаковым расходом.
называют трубопроводы сравнительно большой длины, в которых потери напора по длине значительно преобладают над местными потерями. Местные потери составляют менее 510% потерь по длине трубопровода, и поэтому ими можно пренебречь или ввести при гидравлических расчетах увеличивающий коэффициент, равный 1,051,1. Длинные трубопроводы входят в систему водопроводных сетей, водоводов насосных станций, водоводов и трубопроводов промышленных предприятий и сельскохозяйственного назначения и т.п.
-
определение расхода трубопровода Q, если известны напор H, длина l и диаметр d трубопровода, с учетом наличия определенных местных сопротивлений или при их отсутствии;
-
определение потребного напора H, необходимого для обеспечения пропуска известного расхода Q по трубопроводу длиной l и диаметром d;
-
определение диаметра трубопровода d в случае известных величин напора H, расхода Q и длины l.
Скорость течения жидкости равна
где q > расчетный расход жидкости, м3/с;
– площадь живого сечения трубы, м2.
Коэффициент сопротивления трения λ определяется в соответствии с регламентами свода правил СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования»:
где b – некоторое число подобия режимов течения жидкости; при b > 2 принимается b = 2.
где Re – фактическое число Рейнольдса.
где ν – коэффициент кинематической вязкости жидкости, м²/с. При расчетах холодных водопроводов принимается равным 1,31 · 10-6 м²/с – вязкость воды при температуре +10 °С;
Reкв >- число Рейнольдса, соответствующее началу квадратичной области гидравлических сопротивлений.
где Кэ – гидравлическая шероховатость материала труб, м. Для труб из полимерных материалов принимается Кэ = 0,00002 м, если производитель труб не дает других значений шероховатости.
В тех случаях течения, когда Re ≥ Reкв, расчетное значение параметра b становится равным 2, и формула ( 4 ) существенно упрощается, обращаясь в известную формулу Прандтля:
При Кэ = 0,00002 м квадратичная область сопротивлений наступает при скорости течения воды (ν= 1,31 · 10-6 м²/с), равной 32,75 м/с, что практически недостижимо в коммунальных водопроводах.
Для повседневных расчетов рекомендуются номограммы, а для более точных расчетов – «Таблицы для гидравлических расчетов трубопроводов из полимерных материалов», том 1 «Напорные трубопроводы» (А.Я. Добромыслов, М., изд>во ВНИИМП, 2004 г.).
При расчетах по номограммам результат достигается одним наложением линейки – следует прямой линией соединить точку со значением расчетного диаметра на шкале dр с точкой со значением расчетного расхода на шкале q (л/с), продолжить эту прямую линию до пересечения со шкалами скорости V и удельных потерь напора 1000 i (мм/м). Точки пересечения прямой линии с этими шкалами дают значение V и 1000 i.
Как известно, затраты электроэнергии на перекачку жидкости находятся в прямой пропорциональной зависимости от величины Н (при прочих равных условиях). Подставив выражение ( 3 ) в формулу ( 2 ), нетрудно увидеть, что величина i (а, следовательно и Н) обратнопропорциональна расчетному диаметру dр в пятой степени.
Выше показано, что величина dр зависит от толщины стенки трубы e: чем тоньше стенка, тем выше dр и тем, соответственно, меньше потери напора на трение и затраты электроэнергии.
Если в дальнейшем по каким-либо причинам меняется значение MRS трубы, ее диаметр и толщина стенки (SDR) должны быть пересчитаны.
Следует иметь в виду, что в целом ряде случаев применение труб с MRS 10 взамен труб с MRS 8, тем более труб с MRS 6,3 позволяет на один размер уменьшить диаметр трубопровода. Поэтому в наше время применение полиэтилена РЕ 80 (MRS 8) и PE 100 (MRS 10) взамен полиэтилена РЕ 63 (MRS 6,3) для изготовления труб позволяет не только уменьшить толщину стенки труб, их массу и материалоемкость, но и снизить затраты электроэнергии на перекачку жидкости (при прочих равных условиях).
В последние годы (после 2013) трубы изготовленные из полиэтилена ПЭ80 практически полностью вытеснены из производства трубами изготовленные из полиэтилена марки ПЭ100. Объясняется это тем, что сырье из которого производятся трубы поставляется из-за границы маркой ПЭ100. А еще тем, что полиэтилен 100 марки имеет более прочностные характеристики, благодаря чему, трубы выпускаются с теми же характеристиками, что трубы из ПЭ80, но с более тонкой стенкой, за счет чего увеличивается пропускная способность полиэтиленовых трубопроводов.
Номограмма для определения потерь напора в трубах диаметрами 6 , 100 мм.
Номограмма для определения потерь напора в трубах диаметрами 100 , 1200 мм.
Критерий Рейнольдса
Такую зависимость вывел английский физик и инженер Осборн Рейнольдс (1842 — 1912).
Критерий, который помогает ответить на вопрос, есть ли необходимость учитывать вязкость, является число Рейнольдса Re. Оно равно отношению энергии движения элемента текущей жидкости к работе сил внутреннего трения.
Рассмотрим кубический элемент жидкости с длиной ребра n. Кинетическая энергия элемента равна:
Согласно закону Ньютона, сила трения, действующая на элемент жидкости, определяется так:
Работа этой силы при перемещении элемента жидкости на расстояние n составляет
а отношение кинетической энергии элемента жидкости к работе силы трения равно
Сокращаем и получаем:
Re — называется числом Рейнольдса.
Таким образом, Re — это безразмерная величина, которая характеризует относительную роль сил вязкости.
Например, если размеры тела, с которым соприкасаются жидкость или газ, очень малы, то даже при небольшой вязкости Re будет незначительно и силы трения играют преобладающую роль. Наоборот, если размеры тела и скорость велики, то Re >> 1 и даже большая вязкость почти не будет влиять на характер движения.
Однако не всегда большие числа Рейнольдса означают, что вязкость не играет никакой роли. Так, при достижении очень большого (несколько десятков или сотен тысяч) значения числа Re плавное ламинарное (от латинского lamina — «пластинка») течение превращается в турбулентное (от латинского turbulentus — «бурный», «беспорядочный»), сопровождающееся хаотическими, нестационарными движениями жидкости. Этот эффект можно наблюдать, если постепенно открывать водопроводный кран: тонкая струйка течёт обычно плавно, но с увеличением скорости воды плавность течения нарушается. В струе, вытекающей под большим напором, частицы жидкости перемещаются беспорядочно, колеблясь, всё движение сопровождается сильным перемешиванием.
Появление турбулентности весьма существенно увеличивает лобовое сопротивление. В трубопроводе скорость турбулентного потока меньше скорости ламинарного потока при одинаковых перепадах давления. Но не всегда турбулентность плоха. В силу того что перемешивание при турбулентности очень значительно, теплообмен — охлаждение или нагревание агрегатов — происходит существенно интенсивнее; быстрее идёт распространение химических реакций.
Уравнение Бернулли стационарного движения
Одно из важнейших уравнений гидромеханики было получено в 1738 г. швейцарским учёным Даниилом Бернулли (1700 — 1782). Ему впервые удалось описать движение идеальной жидкости, выраженной в формуле Бернулли.
Идеальная жидкость — жидкость, в которой отсутствуют силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда.
Уравнение стационарного движения, носящее его имя, имеет вид:
где P — давление жидкости, ρ − её плотность, v — скорость движения, g — ускорение свободного падения, h — высота, на которой находится элемент жидкости.
Смысл уравнения Бернулли в том, что внутри системы заполненной жидкостью (участка трубопровода) общая энергия каждой точками всегда неизменна.
В уравнении Бернулли есть три слагаемых:
- ρ⋅v2/2 — динамическое давление — кинетическая энергия единицы объёма движущей жидкости;
- ρ⋅g⋅h — весовое давление — потенциальная энергия единицы объёма жидкости;
- P — статическое давление, по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).
Это уравнение объясняет почему в узких участках трубы растёт скорость потока и падает давление на стенки трубы. Максимальное давление в трубах устанавливается именно в месте, где труба имеет наибольшее сечение. Узкие части трубы в этом отношении безопасны, но в них давление может упасть настолько, что жидкость закипит, что может привести к кавитации и разрушению материала трубы.
Уравнение Навье — Стокса для вязких жидкостей
В более строгой формулировке линейная зависимость вязкого трения от изменения скорости движения жидкости называется уравнением Навье — Стокса. Оно учитывает сжимаемость жидкостей и газов и, в отличие от закона Ньютона, справедливо не только вблизи поверхности твёрдого тела, но и в каждой точке жидкости (у поверхности твёрдого тела в случае несжимаемой жидкости уравнение Навье — Стокса и закон Ньютона совпадают).
Любые газы, для которых выполняется условие сплошной среды, подчиняются и уравнению Навье — Стокса, т.е. являются ньютоновскими жидкостями.
Вязкость жидкости и газа обычно существенна при относительно малых скоростях, потому иногда говорят, что гидродинамика Эйлера — это частный (предельный) случай больших скоростей гидродинамики Навье — Стокса.
При малых скоростях в соответствии с законом вязкого трения Ньютона сила сопротивления тела пропорциональна скорости. При больших скоростях, когда вязкость перестаёт играть существенную роль, сопротивление тела пропорционально квадрату скорости (что впервые обнаружил и обосновал Ньютон).
Последовательность выполнения гидравлического расчета
б) ориентировочные удельные потери давления на трение в расчетном циркуляционном кольце Rср.
Для расчета Rcp необходимо знать длину главного циркуляционного кольца и расчетное циркуляционное давление.
, (5.1)
где— давление, создаваемое насосом, Па. Практика проектирования системы отопления показала, что наиболее целесообразно принять давление насоса, равное
, (5.2)
где
— сумма длин участков главного циркуляционного кольца;
— естественное давление, возникающее при охлаждении воды в приборах, Па, можно определить как
, (5.3)
где— расстояние от центра насоса (элеватора) до центра прибора нижнего этажа, м.
Значение коэффициента можно определить из табл.5.1.
Таблица 5.1 — Значение в зависимости от расчетной температуры воды в системе отопления
(),C |
, кг/(м3К) |
85-65 |
0,6 |
95-70 |
0,64 |
105-70 |
0,66 |
115-70 |
0,68 |
— естественное давление, возникающее в результате охлаждения воды в трубопроводах .
В насосных системах с нижней разводкой величинойможно пренебречь.
, (5.4)
(5.5)
гдеQ – тепловая нагрузка на участке, Вт:
(tг — tо) – разность температур теплоносителя.
6. По величинамиподбираются стандартные размеры труб .
6. Для выбранных диаметров трубопроводов и расчетных расходов воды определяется скорость движения теплоносителя v и устанавливаются фактические удельные потери давления на трение Rф.
При подборе диаметров на участках с малыми расходами теплоносителя могут быть большие расхождения междуи. Заниженные потерина этих участках компенсируются завышением величинна других участках.
. (5.6)
, (5.7)
где— сумма коэффициентов местных сопротивлений на расчетном участке .
Значение ξ на каждом участке сводят в табл. 5.3.
№ п/п |
Примечания |
. (5.8)
. (5.9)
11. Сравнивают Δр с Δрр. Суммарные потери давления по кольцу должны быть меньше величины Δрр на
. (5.10)
Тепловая нагрузка Q, Вт |
Расход теплоносителя G, кг/ч |
Длина участка lм |
Диаметрd, мм |
Скоростьv, м/с |
Удельные потери давления на трение R, Па/м |
Потери давления на трение Δртр, Па |
Сумма коэффициентов местных сопротивлений∑ξ |
Потери давления в местных сопротивлениях Z |
d, мм |
v, м/с |
R, Па/м |
Δртр, Па |
∑ξ |
Z, Па |
Rl+Z, Па |
Занятие 6
Изменение температуры газа по длине газопровода
.(2.41)
удельной энергии ,
неразрывности ,
состояния ,
теплового баланса .
,
получим
,(2.42)
где ;
KСР– средний на участке полный коэффициент теплопередачи от газа в окружающую среду;
G– массовый расход газа;
cP– средняя изобарная теплоемкость газа.
Величина atLназывается безразмерным критерием Шухова
(2.43)
.(2.44)
.(2.45)
Умножив обе части уравнения удельной энергии на 2и выразив, получим
.(2.46)
Выразим плотность газа в левой части выражения (2.46) из уравнения состояния, произведениеwиз уравнения неразрывности,dxиз уравнения теплового баланса.
(2.47)
или
.(2.48)
Обозначиви интегрируя левую часть уравнения (2.48) отPНдоPК, а правую отTНдоTК, получим
.(2.49)
Произведя замену
,(2.50)
имеем
.(2.51)
.(2.52)С учетом (2.42)
или
,(2.53)
где – поправочный коэффициент, учитывающий изменение температуры по длине газопровода (неизотермичность газового потока).
.(2.54)
Значение Нвсегда больше единицы, следовательно, массовый расход газа при изменении температуры по длине газопровода (неизотермическом режиме течения) всегда меньше, чем при изотермическом режиме (T=idem). Произведение TНназывается среднеинтегральной температурой газа в газопроводе.
,(2.55)
5 Гидравлические потери
Разность давлений масла в двух сечениях одного и того же трубопровода при условии, что первое расположено выше по течению, а второе – ниже, определяется Бернулли
,
где h2 – h1 – разность высот центров тяжести сечений от произвольно выбранного горизонтального уровня;
v1, v2 – cредние скорости масла в сечениях;
–сумма гидравлических потерь при движении масла из первого сечения во второе.
1.5.1Местные потери энергии обусловлены местными гидравлическими сопротивлениями, вызывающими деформацию потока. Местными сопротивлениями являются: сужения, расширения, закругления трубопроводов, фильтры, аппаратура управления и регулирования и пр. При протекании жидкости через местные сопротивления изменяется её скорость и обычно возникают крупные вихри.
Потери давления от местных сопротивлений определяют по формуле Вейсбаха:
МПа (илиПа),
где (кси) – коэффициент сопротивления или потерь,
Каждое местное сопротивление характеризуется своим значением коэффициента. При турбулентном течении значенияопределяются, в основном, формой местных сопротивлений и очень мало изменяются с изменением размеров сечения, скорости потока и вязкости жидкости. Поэтому принимают, что они не зависят от числа Рейнольдса Re.
Значения, например, для тройников с одинаковыми диаметрами каналов, принимают равными, если:
=0,5-0,6
=1,5-2=0,3=1-1,5=0,1=0,05
=0,7
=0,9-1,2=2
= 1,5-2 и т.д.
Значениядля конкретных сопротивлений, встречающихся в гидросистемах оборудования, берут из справочной литературы.
МПа,
где
л = аи поправочный коэффициент ламинарности
Потери давления на трение в трубопроводе определяется по формуле Дарси:
МПа,
где– коэффициент трения в трубопроводе;
.
Коэффициент трения при турбулентном режиме можно определить по формуле Альтшуля, являющейся универсальной (т.е. применимой в любых случаях):
2. Расходная характеристика трубопровода модуль расхода
Вспомним формулу линейных потерь – формулу Дарси – Вейсбаха:.
Выразим в этой формуле скорость V через расход Q из соотношения:
. (6.1)
Для трубопровода определенного диаметра комплекс величинв выражении (6.1) можно считать величиной постоянной (1/К2), кроме коэффициента гидравлического трения λ. На основании понятия среднеэкономической скорости Vс.э покажем, что и указанный коэффициент λ можно отнести к этому комплексу, т.к. в этом случае, число Рейнольдса будет иметь определенное значение:, и на графике Никурадзе коэффициент λ в этом случае будет иметь конкретное значение.
Гидравлическую систему, например водопроводную, для пропуска определенного расхода можно выполнить из труб разного диаметра. При этом с увеличением диаметра d, следовательно, уменьшением скорости V капитальные затраты будут расти, а эксплуатационные затраты будут уменьшаться из-за снижения гидравлических потерь. Скорость, при которой суммарные затраты будут иметь минимальное значение, будем называть среднеэкономической скоростью Vс.э = 0,8…1,3 м/с (рис.6.1).
рис.6.1
(6.2)
Трубопроводы – как артерии цивилизации, «подающие» в дома комфорт и хорошее настроение. Проведение коммуникаций – великая наука. Для контроля проведения и работы систем снабжения водой, газом и другими полезными веществами созданы специальные службы. В помощь населению издана масса методических и информативных материалов. Поговорим об одном из самых важных аспектов проведения коммуникаций – что такое расчетное давление трубопровода и как оно влияет на работу системы.
Поговорим об артериях цивилизации – трубах
Определение давления
Что такое расчетное, условное и рабочее давление трубопровода? Чем отличаются эти понятия? Давайте разбираться, ведь без осознания таких моментов сложно будет сделать расчет перепада давления в трубопроводе, выбрать подходящие элементы для проведения коммуникаций, а, стало быть, и обеспечить комфортное пребывание в доме.
Итак, запоминайте, что значат следующие термины:
- Расчетное давление – это максимально избыточное давление внутри системы, появляющееся в результате воздействия транспортируемого по сети вещества. Следует учитывать, что воздействие происходит не только на трубы, а и на каждый элемент, из которого состоят коммуникации. От этого зависит длительность и функциональность эксплуатации системы, а также безопасность членов семейства, проживающих в доме.
- Условное давление. Этот показатель используют при просчете прочности сосудов и трубопроводов, работающих под давлением при температуре, равной 20 градусам.
- Рабочее давление представляет собой наружное или внутреннее, неизменно максимально избыточное давление, наблюдаемое при нормальных условиях и стандартных составляющих протекания процессов.
- Пробное давление – простой показатель, подразумевающий измерения во время испытания конструкций. Важно отследить, как ведут себя элементы системы при повышении/падении давления в трубопроводе. Это – своего рода генеральная «страховка» перед проведением сети.
Никогда не задумывались, почему вода поступает в дом под напором? Сейчас разберемся!
Что такое трубопровод
Поговорим о том, что собой представляет данные сооружения и какие элементы входят в систему.
Элементы системы
Трубопровод – это конструкция, созданная для перемещения газов, жидкостей либо сыпучих веществ.
Сооружение представляет собой беспрерывную сеть из таких элементов:
- труб,
- крепежей,
- уплотнений,
- средств автоматики,
- запорно-регулирующей арматуры,
- опор,
- прокладок,
- контрольно-измерительных устройств,
- подвесок,
- соединительных деталей,
- антикоррозийных элементов,
- других необходимых материалов.
Из соединительных деталей в ход идут:
- отводы,
- штуцера,
- тройники,
- переходы,
- заглушки,
- переходные кольца.
Соединительные элементы
Главная миссия соединительных деталей – сочленение элементов, включая такие важные места, как наклоны, повороты, изгибы, колебания в диаметре труб, а также в ситуациях, когда использование сети приостановлено. Соединение деталей осуществляется преимущественно сваркой встык.
Для чего нужны трубопроводы
Львиная доля (около 2/3 частей) от общей протяженности трубопроводов в нашей стране – магистрали. Они – транспорт для нефти, газа к местам потребления или переработки (на производства, в порты и т.д.). После переработки продукты направляются к потребителям также по магистральным системам. В России итоговая протяженность таких конструкций – более 200 тысяч километров. Оставшуюся треть трубопроводов относят к технологическому типу. По ним транспортируют жидкость, газ, пар в готовом виде либо в качестве полуфабрикатов, сырья. Такие сети оборудованы противопожарными и защищающими от воздействия на организм и природу вредных веществ устройствами.
Параметры и качество изделий, задействованных в строительстве трубопроводов, подтверждается посредством паспортов и сертификатов заводом-производителем, конечно, если вы не приобретете ворованный или самопальный товар.
Стоит обратить внимание! Окраска труб разнится и зависит от того, что по ним транспортируется. Так, к примеру, газовые магистрали имеют желтое покрытие, питьевая вода – зеленый цвет, а техническая – черный оттенок. Коммуникации, по которым перемещается пар, окрашивают в красные тона.
Классификация
Что такое трубопровод высокого давления или низкого? Чем они отличаются?
Для начала вспомним, какие в принципе бывают трубопроводы по виду транспортируемых субстанций?
- газопроводы:
- воздушные,
- кислородные,
- хлорные,
- ацетиленовые,
- аммиачные;
- водопроводы;
- кислопроводы;
- бензопроводы;
- паропроводы;
- рассолопроводы;
- щелочепроводы;
- нефтепроводы;
- маслопроводы.
Вещества, следующие по коммуникациям, в свою очередь разнятся по агрессивности и делятся на такие группы:
- малоагрессивные либо неагрессивные, приводящие к появлению коррозии внутри системы в течение года со скоростью до 0,1 мм;
- средней агрессивности, провоцирующие коррозию с годовой скоростью 0,1-0,5 мм;
- высокоагрессивные, когда коррозия наступает быстрее среднего показателя.
Расчет толщины стенки трубопровода и выбор материала системы зависит не только от давления, но и от агрессивности транспортируемых продуктов. Для проведения коммуникаций, по которым будут перемещаться среднеагрессивные вещества, используют элементы из углеродистой стали с толстой стенкой, чтобы уберечь сеть от выхода из строя из-за ржавчины (норматив – до 0,5 мм за год). Если через коммуникации перемещают высокоагрессивные продукты, то лучшие материалы для таких магистралей – высоколегированная сталь и цветной металл. Можно также выбрать и биметаллические элементы и даже не металл (с подачи профессионала). Главное – чтобы материал был устойчив перед коррозией или ржавел медленно.
А теперь классификация по давлению трубопроводов (в 1кгс/см²):
- безнапорные (сети, функционирующие без избыточного давления);
- вакуумные (до 1);
- низкого (1-15);
- среднего (16-100);
- высокого (свыше 100).
Это важно знать! Врезка в трубопровод под давлением должна осуществляться соответствующими службами, мастерами, имеющими специальный допуск к таким работам.
Так выглядят магистральные трубы
Давление в водопроводной системе
Водопроводная сеть – самая популярная в хозяйстве, к тому же ее можно монтировать своими силами – без привлечения государственных контор и редких специалистов.
Какое давление в трубопроводе холодной воды по ГОСТу, как рассчитать этот показатель, чтобы сеть служила исправно долгие годы?
Рассчитывается все относительно просто: основной параметр – наибольший в сети показатель, выведенный при самых неблагоприятных ситуациях в функционировании системы (за исключением моментов гидроударов, когда наблюдается резкий скачок).
Калькуляция статического расчета отличается. Тут показатель напрямую зависит от давления внутри системы в месте наибольшего перепада высот.
Сходятся расчеты в применении такого правила: неизменно учитывайте ситуации при худших обстоятельствах.
Давление в каждой отдельно взятой точке системы должно быть таким, чтобы вода могла беспрепятственно поступать, как в самую высокую, так и в наиболее отдаленную часть сети. Из крана в этой точке живительная влага должна поступать под умеренным давлением – комфортным для пользования.
Свободное давление неизменно должно превышать геодезическую отметку самого высоко расположенного в сети крана.
Минимальные показатели такого плана трубопроводов с питьевой водой (в м):
- одноэтажное строение – 10;
- двухэтажный дом – 12;
- трехэтажное здание – 16;
- каждый этаж выше – плюс 4.
Показатель для мест водоразбора – от 10 метров. Высокие строения, построенные на возвышенностях, оснащают устройством для повышения давления в системе подачи воды.
Стоит обратить внимание! Не забывайте: давление в сети может падать из-за гидравлического сопротивления в сети.
Почему вода в сети двигается? Благодаря таким помощникам, как водонапорные башни, насосы и гидравлические сооружения.
Отдельная тема – организация подачи воды к противопожарным установкам. Тут норма давления, вне зависимости от обстоятельств, – свыше 10 м. Только в исключительных случаях, после согласования с соответствующими инстанциями можно данный показатель снизить, и то не намного.
Успешной работы вам и комфорта в доме!
Теперь вы знакомы с пакетом базовой информации относительно давления внутри трубопроводов. Осталось правильно применить полученные знания во благо собственному семейству либо бизнес-проекту.
Видео: газификация частного дома
Толкование Давление трубопровода рабочее</dt>
«…4. Давление рабочее — максимальное избыточное давление на входе в элемент, определяемое по рабочему давлению трубопровода с учетом сопротивления и гидростатического давления. По величине рабочего давления в элементе трубопровода следует определять область применения материала…»
Источник:
Постановление Госатомнадзора РФ N 3, Госгортехнадзора РФ N 100 от 19.06.2003 «Об утверждении и введении в действие федеральных норм и правил в области использования атомной энергии «Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды для объектов использования атомной энергии. НП-045-03» (Зарегистрировано в Минюсте РФ 10.07.2003 N 4885)
</dd>
Официальная терминология. Академик.ру. 2012.
</dl>
Смотреть что такое «Давление трубопровода рабочее» в других словарях:
-
Давление трубопровода условное — 7. Давление условное рабочее давление среды в арматуре и деталях трубопроводов, при котором обеспечивается их длительная эксплуатация при 20 град. С… Источник: Постановление Госатомнадзора РФ N 3, Госгортехнадзора РФ N 100 от 19.06.2003 Об… … Официальная терминология
-
давление — 2.3 давление: Механическая величина, характеризующая интенсивность сил, действующих на внутреннюю (внутреннее давление среды) или наружную (внешнее давление воды, грунта) поверхность трубопровода по нормали к ней. Источник: СТО Газпром 2 2.1 318… … Словарь-справочник терминов нормативно-технической документации
-
Рабочее давление воды — Давление воды в сечении подводящего к соплу прямого участка трубопровода, расположенного на расстоянии не более половины диаметра трубопровода от вентиля сопла, при полностью открытом вентиле, в рабочем режиме насоса при мойке Источник: ГОСТ… … Словарь-справочник терминов нормативно-технической документации
-
рабочее давление — Наибольшее избыточное давление, возникающее при нормальном протекании рабочего процесса, без учета гидростатического давления среды и допустимого кратковременного повышения давления во время действия предохранительного клапана. Примечание Под… … Справочник технического переводчика
-
РАБОЧЕЕ ДАВЛЕНИЕ — такое (см.), при котором предусматривается нормальная работа сосуда, прибора, аппарата, котла, трубопровода и др. устройств, находящихся под давлением газов, паров млн. жидкостей, в условиях грамотной эксплуатации … Большая политехническая энциклопедия
-
рабочее давление — 3.8 рабочее давление: Давление воздуха на выходе из компрессора. Источник … Словарь-справочник терминов нормативно-технической документации
-
давление рабочее — 3.10 давление рабочее: Максимальное давление газа в баллоне при температуре 20 °С. Источник … Словарь-справочник терминов нормативно-технической документации
-
рабочее давление — наибольшее избыточное давление, при котором обеспечивается заданный режим эксплуатации арматуры и деталей трубопровода (МПа, кгс/см2). (Смотри: ПБ 03 108 96. Правила устройства и безопасной эксплуатации технологических трубопроводов.) Источник:… … Строительный словарь
-
номинальное давление — 2.2.105 номинальное давление: Максимальное рабочее давление в пароварочном аппарате и в парогенераторе, указанное изготовителем для частей аппарата, находящихся под давлением. Источник … Словарь-справочник терминов нормативно-технической документации
-
расчетное давление — 3.15 расчетное давление: Максимальное рабочее давление с учетом допустимых кратковременных повышений, при котором обеспечивается надежная работа барокамеры при рабочей температуре среды в течение заданного срока эксплуатации. Расчетное давление… … Словарь-справочник терминов нормативно-технической документации
Используемые источники:
- http://trubamaster.ru/vodoprovodnye/rraschet-davleniya-vody-v-truboprovode.html
- https://mr-build.ru/newsanteh/raspredelenie-davlenia-v-trubah.html
- http://trubsovet.ru/nazn/vodoprovod/davleniya-v-trubax.html
- https://official.academic.ru/5073/давление_трубопровода_рабочее